8.3 SUITABILITY for database searching ... 49
8.4 SEARCH, REGISTRATION, and DOCUMENTATION .. 50
8.5 CASE DESCRIPTION INFORMATION ... 50
8.6 SCREENING SEARCH RESULTS .. 50
8.7 DOCUMENTING SEARCHES AND REGISTRATION .. 51
8.8 TENPRINT to LATENT INQUIRY (TLI)/UNSOLVED LATENT DATABASE 51
8.9 WIN ABIS PERFORMANCE CHECK ... 51
9.0 REPORTING ... 52
9.1 TERMINOLOGY .. 53
10.0 PEER REVIEW ... 53
10.1 TECHNICAL REVIEW .. 53
10.2 ADMINISTRATIVE REVIEW ... 53
10.3 TECHNICAL DIFFERENCES OF OPINION ... 53
11.0 APPENDIX A- FORMULARIES ... 55
11.1 ACID YELLOW .. 55
11.2 AMIDO BLACK .. 56
11.3 ARDROX P-133D ... 57
11.4 BASIC YELLOW 40 ... 57
11.5 DFO (1,8-DIAZAFUOREN-9-ONE) ... 58
11.6 GUN BLUE/ACIDIFIED HYDROGEN PEROXIDE ... 58
11.7 1,2-INDANEDIONE & 1,2-INDANEDIONE + zinc chloride 59
11.8 LUMICYANO .. 59
11.9 M.B.D. .. 60
11.10 NINHYDRIN .. 60
11.11 NINHYDRIN HT SOLUTION ... 62
11.12 OIL RED O .. 62
11.13 PHYSICAL DEVELOPER (PD) ... 63
11.14 POLICYANO UV .. 65
11.15 POWDERS ... 65
11.16 R.A.M. .. 67
11.17 RHODAMINE 6G .. 68
11.18 SILVER NITRATE .. 69
11.19 SMALL PARTICLE REAGENT ... 69
11.20 POWDER SUSPENSION .. 70
11.21 SUDAN BLACK .. 70
11.22 KJELL CARLSON INNOVATION WETWOP™/WET POWDER SUSPENSION ... 70
11.23 TAPEGLO™ .. 71
12.0 APPENDIX B– SUPPLIES & EQUIPMENT ... 71
12.1 SUPPLIES .. 71
12.1.1 BRUSHES: .. 71
12.1.2 MAGNETIC WANDS ... 72
12.1.3 CASTING MATERIAL .. 72
12.1.4 LIFTING MATERIALS ... 72
12.1.5 POWDERS: .. 73
12.1.6 MISCELLANEOUS SUPPLIES: ... 73
12.2 EQUIPMENT .. 73
12.2.1 CYANOACRYLATE FUMING CHAMBERS (MVC™ CHAMBERS) 73
12.2.2 CYVAC™ VACUUM SYSTEM ... 73
12.2.3 ALTERNATE LIGHT SOURCES (ALS) ... 74
12.2.4 OVENS .. 74
12.2.5 BALANCES: .. 74
12.2.6 DIGITAL IMAGE CALIBRATION TOOL CHECK: 75
12.2.7 CAMERAS AND SCANNERS .. 75
12.2.8 Laser .. 75
12.3 CONTROLS ... 76
blood..76
reference pads ..76
APPENDIX C – REAGENT SPECIFICATIONS...76
CONSUMABLES AND CHEMICALS..76
APPENDIX D – REFERENCE INFORMATION..79
METRIC EQUIVALENTS...79
CHEMICAL SYNONYMS ...79
ALS FILTER AND GOGGLE RECOMMENDATIONS80
APPENDIX E – ABBREVIATION INDEX..82
ADMINISTRATIVE TERMS ...82
AUTOMATED BIOMETRIC IDENTIFICATION SYSTEM (ABIS) TERMS82
ANALYSIS/COMPARISON/EVALUATION TERMS82
PROCESSING EQUIPMENT AND TECHNIQUES83
ridge detail Assessment TERMS ...84
FINGERPRINT PATTERN TYPES ...84
APPENDIX F – LATENT PRINTS TECHNICAL MANUAL HISTORY85
1.0 SCOPE

This document defines the technical procedures for the examination of evidence submitted for latent print processing and/or friction ridge analysis and comparison.

1.1 GOALS

- Describe methods for developing and preserving friction ridge impressions on various surface types
- Describe a method for friction ridge examinations and the basis for conclusions

1.2 OBJECTIVES

- Establish principles and procedures for the processing of latent print evidence
- Establish principles by which latent print examinations are conducted
- Establish a method for latent print examination
- Establish the conclusions that may result from an examination
2.0 REFERENCES

- WSP Regulations Manual
- WSP Crime Laboratory Division (CLD) Safety Manual
- WSP Safety and Wellness Manual
- WSP CLD Forensic Services Guide
- WSP CLD Quality-Operations Manual
- Fingermark Visualization Manual, Home Office, 2014
- International Standard ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
- ANAB Document AR 3028, Forensic Science Testing Laboratories Accreditation Requirements
- Chemical Formulas & Processing Guide for Developing Latent Prints, U.S. Department of Justice, FBI
- SWGFAST Guidelines, Scientific Working Group on Friction Ridge Analysis, Study, & Technology
- ADAMS User Manual
- CLD LIMS Manual
3.0 TERMS AND DEFINITIONS

ACE-V:
The acronym for a scientific method; Analysis, Comparison, Evaluation, and Verification (see individual terms).

ABIS
The acronym for Automated Biometrics Identification System, a generic term for a finger/palm print matching, storage, and retrieval system.

AFIS
The acronym for Automated Fingerprint Identification System, a generic term for a finger/palm print matching, storage, and retrieval system.

Alternate light Source (ALS):
Any light source, other than a laser, used to excite luminescence of latent prints, body fluids, etc.

Analysis:
The first step of the ACE-V method. The assessment of an impression to determine suitability for comparison.

Anatomical Source:
An area of friction ridge skin from an individual from which an impression originated.

Arch – Plain
A pattern type in which the friction ridges enter on one side of the impression and flow, or tend to flow, out the other side with a rise or wave in the center.

Arch – tented
A pattern type that possesses either an angle, an upthrust, or two of the three basic characteristics of the loop.

Artifact
Any information not present in the original object or image, inadvertently introduced by image capture, processing, compressions, transmission, display, or printing.

Bias
See cognitive bias, confirmation bias, and contextual bias.

Bifurcation
The point at which one friction ridge divides into two friction ridges.

Blind Verification
The independent examination of one or more friction ridge impressions at any stage of the ACE process by another competent examiner who is provided with no, or limited, contextual information, and has no expectation or knowledge of the determinations or conclusions of the original examiner.

Bridge
A connecting friction ridge between, and generally at right angles to, parallel running friction ridges.

Candidate:
An individual’s finger/palm print record under consideration for comparison to the latent finger/palm print.

Characteristic:
Distinctive details of the friction ridges, including Level 1, 2, and 3 details (also known as features).

Cognitive Bias:
The effect of perceptual or mental processes on the reliability and validity of one’s observations and conclusions.

Clarity:
Visual quality of a friction ridge impression

Comparison:
The second step of the ACE-V method. The observation of two or more impressions to determine the existence of discrepancies, dissimilarities, or similarities.

Competency:
Possessing and demonstrating the requisite knowledge, skills, and abilities to successfully perform a specific task.

Complete friction ridge exemplars:
A systematic recording of all friction ridge detail appearing on the palmar sides of the hands. This includes the extreme sides of the palms, joints, tips, and sides of the fingers (also known as major case prints).

Complex examinations:
The encountering of uncommon circumstances during an examination (e.g., the existence of high distortion, low quality or quantity, the possibility of simultaneity, or conflicts among examiners).

Consensus determination or conclusion:
Agreement reflecting the collective judgment of a group of examiners trained to competency when making determinations or conclusions with respect to one or more impressions.
Conclusion:
Determination made during the evaluation stage of ACE-V, including identification, inconclusive, exclusion.

Confirmation Bias:
The tendency to search for data or interpret information in a manner that supports one’s preconceptions.

Conflict:
A difference of determinations or conclusions that becomes apparent during, or at the end of, an examination.

Consultation:
A significant interaction between examiners regarding one or more impressions in question.

Contextual Bias:
The effect of information or outside influences on the evaluation and interpretation of data.

Control:
A known standard or preparation for checking or verifying a test reagent.

Core:
1. The approximate center of a fingerprint pattern.
2. A specific formation within a fingerprint pattern, defined by classification systems such as Henry.

Delta:
The point on a friction ridge at or nearest to the point of divergence of two type lines, and located at or directly in front of the point of divergence. Also known as a tri-radius.

Deviation:
1. A change in friction ridge path.
2. An alteration or departure from a documented policy or standard procedure.

Discrepancy:
The presence of friction ridge detail in one impression that does not exist in the corresponding area of another impression (compare with dissimilarity).

Dissimilarity:
A difference in appearance between two friction ridge impressions (compare with discrepancy).

Dissociated ridges:
1. Disrupted, rather than continuous, friction ridges.
2. An area of friction ridge units that did not form into friction ridges, generally due to a genetic abnormality.

Distortion:
Variances in the reproduction of friction skin caused by factors such as pressure, movement, force, and contact surface.

Dot:
An isolated friction ridge unit whose length approximates its width in size.

Edgeoscopy:
1. Study of the morphological characteristics of friction ridges.
2. Contour or shape of the edges of friction ridges.

Elasticity:
The ability of skin to recover from stretching, compression, or distortion

Elimination prints:
Exemplars of friction ridge skin detail of persons known to have had legitimate access to an object or location.

Enclosure:
A single friction ridge that bifurcates and rejoins after a short course and continues as a single friction ridge.

Ending ridge:
A single friction ridge that terminates within the friction ridge structure.

Erroneous exclusion:
The incorrect determination that two areas of friction ridge impressions did not originate from the same source.

Erroneous identification:
The incorrect determination that two areas of friction ridge impressions originated from the same source.

Evaluation:
The third step of the ACE-V method wherein an examiner assesses the value of the details observed during the analysis and the comparison steps and reaches a conclusion.

Exclusion:
The opinion of an examiner that there is sufficient quality and quantity of detail in disagreement to conclude that a known subject could not be the source of an impression, or that two areas of friction ridge impressions did not originate from the same source.
Exemplars:
The prints of an individual, associated with a known or claimed identity, and deliberately recorded electronically, by ink, or by another medium (also known as known prints).

Features:
Distinctive details of the friction ridges, including Level 1, 2, and 3 details (also known as characteristics).

Fingerprint:
An impression of the friction ridges of all or any part of the finger

Focal Points:
1. In classification, the core(s) and the delta(s) of a fingerprint.
2. Another term for target group.

Forensic Light Source:
See Alternate Light Source.

Friction Ridge:
A raised portion of the epidermis on the palmar or plantar skin, consisting of one or more connected ridge units.

Friction Ridge Detail (Morphology):
An area comprised of the combination of ridge flow, ridge characteristics, and ridge structure

Friction ridge unit:
A single section of ridge containing one pore.

Furrows:
Valleys or depressions between friction ridges.

Galton details:
Term referring to friction ridge characteristics (also known as minutiae) attributed to the research of English fingerprint pioneer, Sir Francis Galton.

Ground truth:
Definitive knowledge of the actual source of an impression.

Henry Classification:
An alpha-numeric system of fingerprint classification named after Sir Edward Richard Henry used for filing, searching, and retrieving tenprint records.

Identification:
Identification is the opinion of an examiner that there is sufficient quality and quantity of detail in agreement to conclude that two impressions originated from the same source.

Impression:
Friction ridge detail deposited on a surface.

Incipient ridge:
A friction ridge not fully developed that may appear shorter and thinner than fully developed friction ridges.

Inconclusive:
The determination by an examiner that there is neither sufficient agreement to conclude an identification, nor sufficient disagreement to conclude an exclusion.

Joint (of the finger):
The hinged area that separates segments of the finger.

Known prints (finger, palm, foot):
The prints of an individual, associated with a known or claimed identity, and deliberately recorded electronically, by ink, or by another medium (also known as exemplars).

Laser
A system using high-intensity output of a narrow band of wavelength for detection of fingerprints and other trace evidence from inherent fluorescence and also for use with fluorescent reagents.

Latent Print:
1. Transferred impression of friction ridge detail not readily visible.
2. Generic term used for unintentionally deposited friction ridge detail.

Lift:
An adhesive or other medium used to transfer a friction ridge impression from a substrate.

Live Scan:
Electronic recording of friction ridges

Loop:
A pattern type in which one or more friction ridges enter upon one side, recurve, touch or pass an imaginary line between delta and core and flow out, or tend to flow out, on the same side the friction ridges entered. Types include left slant loops, in which the pattern flows to the left in the impression; right slant loops, in which the pattern flows to the right in the impression; radial loops, in which the pattern flows in the direction of the radius bone of the forearm (toward the thumb); and ulnar loops, in which the pattern flows in the direction of the ulna bone of the forearm (toward the little finger).
Major Case Print:
A systematic recording of the friction ridge detail appearing on the palmar sides of the hands. This includes the extreme sides of the palms, joints, tips, and sides of the fingers (also known as complete friction ridge exemplars).

Mated Impressions:
Impressions intentionally collected to originate from the same source, and used for the purpose of measuring error rates.

Matrix:
The substance that is deposited or removed by the friction ridge skin when making an impression.

Minutiae:
Events along a ridge path, including bifurcations, ending ridges, and dots (also known as Galton details).

Missed exclusion:
The failure to make an exclusion when in fact the friction ridge impressions are non-mated (includes false positive, non-consensus inconclusive and non-consensus no value).

Missed identification:
The failure to make an identification when in fact both friction ridge impressions are mated (includes false negative, non-consensus inconclusive and non-consensus no value).

Non-complex:
The encountering of common circumstances during an examination (e.g., low distortion, high quality or quantity, or no conflicts among examiners).

Non-consensus determination of no value:
Decisions of no value that conflict with the consensus.

Non-consensus determination of suitability:
When an examiner’s determination of suitability does not concur with consensus. Suitability determinations include non-consensus no value, and non-consensus value decisions.

Non-consensus determination of value:
Decisions of value that conflict with the consensus.

Non-consensus exclusion conclusion:
When an examiner reaches a decision of exclusion that conflicts with the consensus, exclusive of false negative errors.

Non-consensus inconclusive:
When an examiner reaches a decision of inconclusive that conflicts with the consensus, exclusive of false positive and negative errors.

Non-consensus identification conclusion:
When an examiner reaches a decision of identification that conflicts with the consensus, exclusive of false positive errors.

Non-mated impressions:
Impressions intentionally collected to originate from different sources, and used for the purpose of measuring error rates.

Original image:
An accurate replica (pixel for pixel) of the primary image.

Palmprint:
An impression of the friction ridges of all or any part of the palmar surface of the hand.

Patent Print:
Friction ridge impression of unknown origin, visible without development.

Pattern classification:
Sub-division of pattern type, defined by classification systems such as Henry or National Crime Information Center (NCIC) classifications.

Pattern type:
Fundamental pattern of the ridge flow: arch, loop, whorl. Arches are subdivided into plain and tented arches; loops are subdivided into left and right loops; whorls are subdivided into plain whorls, double loop whorls, central pocket loop whorls, and accidental whorls.

Phalanx/Phalange:
1. A bone of the finger or toe.
2. Sometimes used to refer to a segment of a finger.

Plastic Print:
Friction ridge impression of unknown origin that is impressed in a soft substrate to create a three-dimensional impression.

Pores:
Small openings in the skin through which perspiration is released.

Poroscopy:
A study of the size, shape, and arrangement of pores.

Preserved Impression:
Casting, photography, lifting, or other method used to capture a latent impression for further examination.

Primary Image:
The first recording of an image onto media.

Proficiency:
The ongoing demonstration of competency.

Quality:
The clarity of information contained within a friction ridge impression.

Quantity:
The amount of information contained within a friction ridge impression.

Reagent:
Substance used in a chemical reaction to detect, examine, measure, or produce other substances.

Relative Position:
Proximity of characteristics to each other

Ridge flow:
1. The direction of one or more friction ridges.
2. A component of Level 1 detail.

Ridge Path:
1. The course of a single friction ridge.
2. A component of Level 2 detail.

Ridge unit:
See friction ridge unit.

Ridgeology:
The study of the uniqueness of friction ridge skin and its use for personal identification.

Segment (of the finger):
The proximal, medial, or distal section of the finger.

Short ridge:
A single friction ridge beginning, traveling a short distance, and then ending.

Simultaneous impression:
Two or more friction ridge impressions from the same hand or foot deposited concurrently.

Source:
An area of friction ridge skin from an individual from which an impression originated.

Spur:
A bifurcation with one short friction ridge branching off a longer friction ridge.

Stand-alone:
A segment of a simultaneous impression that has sufficient information to arrive at a conclusion of identification independent of other impressions within the aggregate.

Stock Solution:
Concentrated solution diluted to prepare a working solution.

Substrate:
The surface upon which a friction ridge impression is deposited.

Sufficiency:
The product of the quality and quantity of the objective data under observation (e.g., friction ridge, crease, and scar features).

Sufficient:
The determination that there is sufficiency in a comparison to reach a conclusion at the evaluation stage.

Suitable:
The determination that there is sufficiency in an impression to be of value for further analysis or comparison.

Target group:
A distinctive group of ridge features (and their relationships) that can be recognized.

Tenprint:
1. A generic reference to examinations performed on intentionally recorded friction ridge impressions.
2. A controlled recording of an individual’s available fingers using ink, electronic imaging, or other medium.

Tolerance:
The amount of variation in appearance of friction ridge features to be allowed during a comparison, should a corresponding print be made available.

Trifurcation:
The point at which one friction ridge divides into three friction ridges.

Type lines:
The two innermost friction ridges associated with a delta that parallel, diverge, and surround or tend to surround the pattern area.

Verification:
The independent application of the ACE process as utilized by a subsequent examiner to either support or refute the conclusions of the original examiner.

Whorl – accidental:
1. A pattern type consisting of the combination of two different types of patterns (excluding the plain arch) with two or more deltas.
2. A pattern type that possesses some of the requirements for two or more different types of patterns.
3. A pattern type that conforms to none of the definitions of a pattern.

Whorl – central pocket loop:
A pattern type that has two deltas and at least one friction ridge that makes, or tends to make, one complete circuit, which may be spiral, oval, circular, or any variant of a circle. An imaginary line drawn between the two deltas must not touch or cross any recurving friction ridges within the inner pattern area.

Whorl – double loop:
A pattern type that consists of two separate loop formations with two separate and distinct sets of shoulders and two deltas.

Whorl – plain:
A fingerprint pattern type that consists of one or more friction ridges that make, or tends to make, a complete circuit, with two deltas, between which, when an imaginary line is drawn, at least one recurving friction ridge within the inner pattern area is cut or touched.

Working Solution:
Solution at the proper dilution for processing.
4.0 PHYSICAL EVIDENCE EXAMINATION

4.1 SCOPE

The primary purpose of these procedures is to ensure quality and efficiency by establishing documentation and collection procedures that are utilized by the Latent Prints section.

Latent print processing is a qualitative method and uncertainty of measurement does not apply.

4.2 SAFETY

All personnel are advised to utilize appropriate safe work practices when handling the chemicals and solvents used in latent print technical procedures.

Safe work practices include:

- Wearing personal protective equipment such as gloves, laboratory coat, eye protection, etc. when handling any chemicals
- Making sure that all engineering controls such as ventilation hoods, chemical storage cabinets, etc. are used properly
- Utilizing clean work habits such as washing hands after the preparation of chemical solutions (even though gloved), no eating or drinking in chemical processing areas, etc. during daily work procedures

Specific safety practices regarding personal protective equipment and work practice controls are outlined within each processing technique described in Appendix A in this manual.

Safety practices regarding engineering controls, biohazards, the disposal of chemicals, etc. are outlined in the WSP Safety and Wellness Manual, CLD Safety Manual, and/or the WSP CLD MSDS or SDS library(s).

4.3 EVIDENCE EXAMINATION

The assigned examiner of an evidence item is responsible for the preservation of evidentiary materials that may be on that item. While the assigned scientist is primarily responsible for the detection and preservation of friction ridge skin impressions, the scientist must also remain cognizant of, and possibly collect, other probative evidence which may be on each item.

The procedures cannot be expected to address each and every situation or type of evidence encountered. The scientist will be given flexibility to determine an appropriate course of action in regard to the processes employed in the detection and preservation of friction ridge skin impressions; therefore, the procedures will be designed to accommodate the majority of evidence encountered.

Any consultation with an analyst from another section regarding evidence examination on a specific case will be described in the case notes, including the name and date.

Examining Lifts and Images
All digital images, photographs, and latent lifts, whether submitted or lab-generated, must be assigned a unique identifier that is documented in the case notes. Digital file names or lift numbers previously assigned by the submitting agency should be used as identifiers when provided.

Every lift must be annotated with the unique lift identifier, the laboratory case number, and the scientist's initials.

If digital image media is submitted, a printed contact sheet with each image (or a print of each image) will be included in the case notes. The contact sheet must bear the unique image identifiers (or the unique portion of the identifier), laboratory case number, and scientist's initials.

Drug Evidence

When a latent print examiner is the first CLD Forensic Scientist to open the evidence container, the material will be weighed in its immediate package, without the evidence container. The mass may be truncated in documentation to the nearest tenth of a gram. Weights of residues and samples that cannot be accurately weighed may be estimated based on the sample’s appearance, such as “residue”, “trace”, “much less than 0.1 gram” or similar language. Volumes of liquids should be measured or estimated as is practical. Tablets, capsules, injection vials and other such items should be counted when practical, or a total count should be estimated, or a weight of the items may be obtained.

Items with Additional Requests for DNA or Biochemical Examination

Evidence items which include (or may include) a request for DNA and/or biochemical examination shall be handled in a manner to prevent loss, alteration, contamination, or mixing. Scientists will wear gloves while handling evidence both to preserve the integrity of the evidence and for personal protection. When working with limited evidence or handler/touch/cellular DNA requests, a mask or shield must be utilized.

In general, the item may be visually examined, fumed with cyanoacrylate, and dusted with a clean powder prior to forwarding the evidence to the DNA section. Developed impressions should be imaged and not lifted if an item is pending DNA analysis. Chemical reagents or techniques that require a wash should be completed after the biological evidence has been collected. If needed, consult with the appropriate regional DNA section to determine sequencing order for any item possibly contaminated with the blood or other biological contaminants.

Presumptive Test For Blood

Initial examination may be necessary to screen evidence for the possible presence of a relevant biological substance, such as blood. When selecting a potential stain or doing a general swab for blood, evaluate the area to ensure no other evidence will be disrupted (i.e. friction ridge detail, hairs, etc).

Phenolphthalein

Phenolphthalein is a catalytic test for the presumptive identification of blood based upon the peroxidase-like activity of hemoglobin. Use of phenolphthalein follows the procedure outlined in the WSP Biochemical Analysis Procedures Manual.

It may be necessary to collect phenolphthalein positive swabs if the sample being collected is of limited quantity.

Note on the swab box whether the collected sample was positive for the presence of blood.
Collecting a portion of the item
If the entire item will not be sent for examination by a DNA analyst, a portion of the item may be removed. This method is preferred if it is necessary to preserve a stain pattern on a large item. A large enough area around the stain/pattern should be taken to avoid having the cutting instrument come in close contact with the biological material.

Removing the biological material from the item
Visible staining: If the item (or a portion of the item) will not be sent for examination by a DNA analyst, the visible stain may be transferred off the object by swabbing(s) or scraping.
- Swabbing: Moisten a DNA free cotton swab with clean water (not dripping wet, just moist enough to dissolve the stain) and rub the stain. If the stain is small, collect it on a small area of the swab. Collect larger stains on as many swabs as necessary. Use a dry swab afterward to collect any remaining residue. If a moistened swab(s) used, let it air dry.
- Scraping: If the body fluid can be easily flaked off a surface, use a new/sterile scalpel or razor blade and scrape it onto a clean piece of paper. If more than one stain is to be collected, use a new/sterile blade for each scraping. Present day testing is so sensitive that contamination of the blade from the previous stain may be detected. Fold and tape the paper closed.

Non-visible biological material: If the item (or a portion of the item) will not be sent for examination by a DNA analyst, but a non-visible stain or cellular/contact material is suspected to be present, the area may be swabbed.

If the stain is not visible, or to collect cellular/contact material from an item, moisten a DNA free cotton swab with clean water (not dripping wet) and swab the area on the item. Use a dry swab afterward to collect any remaining residue. This technique is referred to as the “wet/dry technique”. If a moistened swab(s) is used, let it air dry.

Cuttings and swabs will be packaged in clean boxes or envelopes. Swab boxes can be packaged together as one item. If possible, store the collected item(s) in a freezer. The collected items will be documented in case notes and described in the report. The items will be given a unique identifier and entered into the chain of custody.

Test Firing Firearms for IBIS/NIBIN Purposes
Test fires are acquired by firing at least two cartridges with the standard or appropriate ammunition following proper firing procedures found in the Firearms Technical Procedures Manual.

4.4 PROCESSING SEQUENCES

Each item of evidence will be visually examined prior to any testing. All relevant observations, such as conditions that may affect friction ridge impression recovery, shall be recorded in the case notes. If other types of evidence are observed, a notation regarding what was observed and how it was preserved for further analysis shall be made. Digital images can supplement notes.

If the evidence is not processed in accordance with general processing sequence guidelines, document the variance. The examiner may at any time make a determination that an item has been tested to its full potential.

A visual examination shall follow each technique employed. Some techniques require the use of an alternate light source and/or laser for examination. Due to the inherent luminescence which may occur with different matrices, any visual examination may include the use of an alternate
light source or laser. When using the laser, all persons in the room must be wearing argon goggles and a sign indicating the laser is in use shall be posted on all access doors.

Impressions that are suitable for further analysis shall be preserved once detected and also if enhanced in any way by subsequent techniques.

Plan an approach to process the evidence for latent prints. The scientist should make the following considerations in determining the processing sequence for each item:

1. Avoid techniques which may compromise other forensic analyses which may be required. Latent prints processing should generally occur after bloodstain pattern analysis, questioned document or trace evidence examinations and prior to DNA or firearm examinations.

2. Generally, move from the least invasive technique to the most invasive technique.

3. Consider the surface of the item (porous, semi-porous, or non-porous) to establish suitable processing techniques.

4. Consider the color of the surface to determine which technique will provide suitable contrast for the detection of impressions.

5. Consider the texture of the surface to determine whether developed impressions will require imaging for preservation. In such a case, use a technique that will provide the best contrast.

6. Consider which matrix (sweat, blood, dirt, oil, amino acids, lipids, etc.) may have been deposited or will best be developed on the surface of the item.

The aforementioned considerations will work in conjunction with the following general processing sequence guidelines to allow the scientist the flexibility to determine the best course of action:

POROUS SURFACES: SUBSTRATES THAT ABSORB THE LATENT PRINT (I.E. PAPER, UNTREATED WOOD, CARDBOARD)

1. Visual examination
2. DFO, 1,2-indanedione, or 1,2-indanedione+zinc chloride
3. Ninhydrin
4. Oil Red O
5. Physical Developer and/or Silver Nitrate

SEMI-POROUS SURFACES (I.E. SOME TREATED WOOD OR CARDBOARD)

1. Visual examination
2. Cyanoacrylate
3. Powder processing
4. DFO and/or Ninhydrin

NON-POROUS SURFACES: SUBSTRATES THAT DO NOT ABSORB THE LATENT PRINT, (I.E. GLASS, METAL, PLASTIC)

1. Visual examination
2. Cyanoacrylate
3. Powder processing and/or dye stain (not necessarily in order)

If possibly contaminated with blood, use Amido Black or Acid Yellow 7 after processing the surrounding surfaces with powder.

ADHESIVE SURFACES (I.E. TAPE, STAMPS)

1. Visual examination

2. Powder suspension, Gentian violet, fluorescent cyanoacrylate, or dye stain (TapeGlo™)

Process the non-adhesive side of an item independently.

A positive control must be obtained concurrently with each fuming chamber cycle with cyanoacrylate (and its derivatives). A positive control test must be completed prior to use each day for all remaining reagents. Each positive control test must be recorded in the scientist’s case notes.

If a control test is negative, test the reagent again to verify the negative result. If the negative test is repeated, notify the supervisor.

4.5 DOCUMENTATION

Case notes will include observations and each examination activity, in sequence, and the results of those activities. Examination activities include but are not limited to: processing/development techniques, digital imaging, lifts, ABIS searches, retrieval of exemplars, and analysis and comparison of impressions. The dates of examination activities will also be recorded.

The source (natural oils, reference pads, blood) for each control and the substrate used must be documented.

Developed impressions may be preserved either by imaging or lifting. The location and orientation of each lift and/or image must be documented, and may be done through any combination of written notes, sketches, and/or photographs. The development technique used prior to the lift or image must also be clear in the case notes. The contents of each image must be clearly indicated, either in the notes or on a label included within the image.

Each image and lift shall be given a unique identifying number to be documented in the case notes. If an impression is assigned a unique identifier, case notes shall indicate which lifts and/or images contain the designated impression(s).

Record the enhancement techniques and save the resultant image if an image (including scanned impressions) is enhanced for examination purposes and subsequently designated for comparison. Enhancements specifically for the purpose of formatting an image for ABIS entry (i.e. image size and cropping) do not need to be recorded, and the resultant image does not need to be retained.

Case notes will indicate which impression numbers are represented in each image and lift.

Evidence items generated during casework will be documented at the end of the processing notes. The documentation will include a description of the packaging, item number, and evidence description – including media type (if applicable) and the number of images or lifts.
Mark the evidence with the lab case number and scientist's initials. Impression numbers may also be marked on the evidence where obtained. Do not mark directly on the item if it may be examined for DNA. If the evidence is too small to label, it may be placed in a package with the lab case number and scientist's initials before being returned to the original package.
5.0 PROCESSING TECHNIQUES

5.1 LATENT PRINT VISUALIZATION TECHNIQUES

5.1.1 ACID YELLOW 7

Acid Yellow 7 is a fluorescent dye that stains blood to give a yellow colored product. This technique is used to develop latent prints in blood on dark, non-porous surfaces.

CONTROL TEST

Deposit blood onto a dark non-porous substrate and process with Acid Yellow. A positive test will result in a developed control print in contrast to the background color when viewed with the alternate light source.

PROCEDURE

The prints must be fixed prior to staining by using a blood fixative. Hold a dry piece of absorbent paper over the print area and drop one edge to the surface of the solution. Working from the wet edge, progressively wet the paper while smoothing onto the substrate. When completely covered, leave the wet paper on for at least three minutes. Apply the staining solution using a pipette or immersion. Leave the staining solution in contact with the print area for one-three minutes, then wash with the wash solution.

Examine the evidence under the alternate light source at 400nm-495nm using a yellow or light orange filter.

Preservation Method: Photography - Developed impressions shall be imaged for preservation within a couple of hours after processing as they will become blurry over time.

5.1.2 AMIDO BLACK

Amido Black, also known as naphthol blue-black, is a dye that stains proteins present in blood to give a blue-black product and is used to develop or enhance latent prints that have been left in blood on both porous and non-porous surfaces.

CONTROL TEST

Deposit blood onto a light colored substrate and process with Amido Black. A positive test will result in the development of a blue/black print.

PROCEDURE

Methanol Based

Methanol based Amido Black can be used on both porous and non-porous surfaces, and is preferred for painted surfaces. Be certain that the blood is completely dry prior to application. The developer solution can be applied by immersion or using a sprayer or squirt bottle. After 30 to 90 seconds, rinse with de-stainer. Apply final rinse as needed. Allow the item to air dry.

Water Based

Water based Amido Black can be used on both porous and non-porous surfaces, but is not recommended for painted surfaces. Apply the blood fixative solution and allow it to remain on the
surface for five minutes. The developer solution can be applied by immersion or using a sprayer or squirt bottle. Allow the developer solution to remain on the surface for three minutes. De-stain with the citric acid stock. Additionally rinse with distilled water as needed. Allow the item to air dry.

Preservation Method: Photography

5.1.3 ARDROX P-133D

Ardrox P-133D is a dye stain used for latent print luminescence in conjunction with alternate light sources and cyanoacrylate fuming on non-porous evidence. The dye stain does not develop friction ridge skin detail; it merely improves the contrast of cyanoacrylate enhanced prints. Ardrox can be used in conjunction with Rhodamine 6G. When using both stains, Ardrox should be used prior to Rhodamine 6G.

CONTROL TEST

Utilize a positive test from cyanoacrylate processing or use a fumed sebaceous control print on a medium of choice and process with Ardrox. A positive test will result in a developed control print in contrast to the background color when viewed with the alternate light source.

PROCEDURE

Application of Ardrox may be accomplished through dipping or washing. Place the cyanoacrylate fumed evidence into the Ardrox for about ten minutes or wash the surface area with the stain. Allow the stain to remain in contact with the surface area for ten minutes. Excess stain is removed by placing the evidence under running tap water until no yellow color remains.

Examine the evidence under the alternate light source at 350nm-480nm using a yellow filter.

Preservation Method: Photography

5.1.4 BASIC YELLOW 40

Basic Yellow 40 is a fluorescent dye stain used for latent print luminescence in conjunction with alternate light sources and cyanoacrylate fuming on non-porous surfaces. The dye stain does not develop friction ridge skin detail; it merely improves the contrast of cyanoacrylate enhanced prints.

CONTROL TEST

Utilize a positive test from cyanoacrylate processing or use a fumed sebaceous control print on a medium of choice and process with Basic Yellow. A positive test will result in a developed control print in contrast to the background color when viewed with the alternate light source.

PROCEDURE

It is recommended that the evidence be under-fumed, rather than over-fumed. Test a small section of the surface with Basic Yellow before applying to the entire surface. If the section completely fluoresces after rinsing and drying, do not use Basic Yellow to process that surface.

Apply the Basic Yellow 40 solution by submerging the evidence in a tray or container. Washing the solution over the surface using a wash bottle may also be done; however, do not spray the solution. Leave the Basic Yellow on the surface for about one minute then rinse with running tap water. Allow the evidence to air dry.
Examine the evidence under the alternate light source at 450nm-480nm using an orange filter.

Preservation Method: Photography

5.1.5 CYANOACRYRATE ESTER (SUPERGLUE) FUMING

Fuming with cyanoacrylate will cause latent print residue on non-porous and some semi-porous surfaces to appear white in color. Latent prints developed this way are not easily damaged.

OPTION 1 – MVC™ CYANOACRYLATE FUMING CHAMBER

CONTROL TEST
Deposited a sebaceous rich print onto a non-porous substrate of choice and place it with the fuming chamber concurrent with the item(s) being tested. A positive test will result in a cyanoacrylate developed control print.

PROCEDURE
Procedures are described in the Cyanoacrylate Fuming Chamber User Guide, which will be retained in the Equipment Log at each laboratory.

PRESERVATION METHOD: PHOTOGRAPHY

OPTION 2 – STANDARD FUMING CHAMBER

CONTROL TEST
Deposit a sebaceous rich print onto non-porous substrate of choice and place it within the fuming chamber concurrent with the item(s) being tested. Monitor the process to avoid over fuming. A positive test will result in a cyanoacrylate developed control print.

PROCEDURE
The addition of humidity to the fuming chamber prior to fuming plays a major role in successful development of white ridge detail. To allow maximum exposure of fumes to the evidence being fumed, evidence should be placed in the chamber so that all areas are exposed. After the humidity has been raised, the liquid glue is placed in a disposable container and placed on the heating source at the bottom of the chamber. The number of drops added is dependent on the size of the chamber and the surface area(s) of the evidence to be fumed. Alternatively, a number of Hard Evidence™ packs relative to the size of the chamber can be opened and taped to the side of the chamber or a fuming wand may be used to emit cyanoacrylate fumes. Once the cyanoacrylate is added, close the chamber. Viewing from outside the chamber, check the test print ten to twenty minutes after fuming begins. Once the test print begins to be visible, exhaust the fumes from the chamber thoroughly (for approximately fifteen minutes) before examining the item(s).

PRESERVATION METHOD: PHOTOGRAPHY
OPTION 3 – CYVAC™ FUMING CHAMBER

CONTROL TEST
Deposit a sebaceous rich print onto a non-porous substrate of choice and place it within the fuming chamber concurrent with the item(s) being tested. A positive test will result in a cyanoacrylate developed control print.

PROCEDURE
Load evidence into the appropriate chamber according to the size of the item(s). If placing several layers of baggies in the tray, separate each layer with a sheet of paper. Do not place sealed containers in the chamber. Place a foil cup in each of the holes in whichever chamber is being used. Place cyanoacrylate in the foil cups—four drops in the bell jar cup or two in each of the seven foil cups for the cabinet chamber. Seal the door and/or set the bell jar in place. Close the inlet and purge valves, leaving the outlet valve open. Turn on the pump switch. When the vacuum gauge reaches 10, turn on the re-circulate switch and the vapor release switch. Allow the pumps to continue running with the outlet valve open for 20 to 40 minutes past the point when the vapor re-circulate temperature reaches 82 degrees (allowing the pumps to run longer will not cause overdevelopment). After the development time has elapsed, turn the vapor re-circulate, vapor release, and pump switches off. Slowly open the inlet and purge valves. Turn on the pump switch and allow the system to purge the fumes for 5 minutes. Turn off the pump switch, open the chamber and remove the foil cup(s). If any glue remains in a cup, it should be discarded. The foil cups may otherwise be re-used.

Preservation Method: Photography

5.1.6 DFO (1,8–DIAZAFLUOREN–9–ONE)
DFO is a fluorescent reagent used to develop latent prints on paper and other porous surfaces. It excels in the development of latent prints on white and most pastel colored papers and glassine envelopes and packets. DFO reacts to the amino acids present in perspiration and should be used prior to Ninhydrin.

CONTROL TEST
Deposit an amino acid rich print onto a porous surface, process with DFO, and place into an oven. A positive test will result in a developed print in contrast to the background color when viewed with the alternate light source or laser.

PROCEDURE
Application of DFO may be accomplished through spraying, brushing, or dipping (although it is possible to spray DFO, it is not recommended). After treating the evidence with the DFO, allow it to dry at room temperature. Place the item in a chemical processing oven between ~80-100°C for twenty minutes.

The DFO developed prints may be visible to the naked eye with white light but should be viewed under an alternate light source or laser. Latent prints will develop in a pale purple/red color that generally luminesces between 495nm-590nm using an orange or red filter.

Preservation Method: Photography
5.1.7 GUN BLUE/ACIFIED HYDROGEN PEROXIDE

Gun bluing is a process that is used to develop latent prints on brass cartridges and cartridge cases. The reaction occurs on areas of metal unprotected by sebaceous latent print residue, creating a dark-colored coating on these areas.

CONTROL TEST

Deposit a sebaceous rich print onto a clean brass item and process with Gun Bluing solution. A positive test will result in a developed control print.

PROCEDURE

Light cyanoacrylate fuming (not in a fuming chamber) has been shown to be beneficial prior to testing with gun bluing solution. Ideally, no other processing prior to using this solution should be conducted. Immerse the evidence for several seconds and closely monitor for the development of latent prints. Halt the development by rinsing with tap water and air dry.

Preservation Method: Photography

5.1.8 1,2-INDANEDIONE (IND) AND 1,2-INDANEDIONE+ZINC CHLORIDE

1,2-indanedione is used to develop latent prints on paper and other porous surfaces. IND reacts to amino acid residue in latent prints to produce a pink-red color that also fluoresces.

CONTROL TEST

Deposit an amino acid rich print onto a porous surface, treat with IND, and place into an oven. A positive test will result in a developed print in contrast to the background color when viewed with the alternate light source or laser.

PROCEDURE

Whether using 1,2-indanedione or 1,2-indanedione+zinc chloride, dip the evidence item in the reagent, air dry in the fume hood, and repeat both steps. Place the item in the oven at ~100°C for ten to twenty minutes or dry iron for twenty minutes. If using the dry iron, place sheets of thick paper between the evidence and the iron; don't directly iron the prints.

Examine the evidence under the alternate light source or laser at 515nm-570nm using an orange filter.

Preservation Method: Photography

5.1.9 LUMICYANO

Lumicyano is a fluorescent cyanoacrylate. Lumicyano will cause latent print residue on non-porous and some semi-porous surfaces to appear white in color under white light and to fluoresce under blue/green light. Latent prints developed this way are not easily damaged.

Lumicyano has no detrimental effect on the recovery of DNA or on subsequent DNA profiles.

CONTROL TEST

Deposit a sebaceous rich print onto a non-porous substrate of choice and place it within the fuming chamber concurrent with the items being tested. A positive test will result in a cyanoacrylate developed
control print. A second positive test will result in the fluorescence of the control print when examining it with an alternate light source or laser as directed in the Procedure. The results for each lighting condition shall be documented in the examiner’s notes.

PROCEDURE

A 5-8% solution of powder to solution is recommended. Other variables such as fuming time, relative humidity, and size of fuming chamber may be adjusted as needed to ensure a positive reaction to glue fuming. Examine the evidence within 24 hours, both with and without an alternate light source. When examining for fluorescence, use an alternate light source or laser at 450-532nm with an orange viewing filter.

If the developed control print does not adequately fluoresce, the evidence will still be examined with the alternate light source as directed above and the failed control will be included in the report. The evidence items may be subsequently processed with powders and/or chemicals.

Preservation Method: Photography

5.1.10 M.B.D.

M.B.D. is a fluorescent dye stain used for latent print luminescence in conjunction with alternate light sources and cyanoacrylate fuming on non-porous evidence. The dye stain does not develop friction ridge skin detail; it merely improves the contrast of cyanoacrylate enhanced prints.

CONTROL TEST

Utilize a positive test from cyanoacrylate processing or use a fumed sebaceous control print on a medium of choice and process with M.B.D. A positive test will result in a developed control print in contrast to the background color when viewed with the alternate light source.

PROCEDURE

Application of M.B.D. may be accomplished through immersion in the solution or by using a spray device or squirt bottle. Allow the evidence to dry.

Examine the evidence with the alternate light source at 415nm-505nm using an orange filter.

Preservation Method: Photography

5.1.11 NINHYDRIN

Ninhydrin is a chemical method for developing latent prints on porous surfaces and absorbent materials such as paper, cardboard, and smooth raw wood. This method is based on the reaction of the Ninhydrin and the amino acids, proteins, and peptides that are present in the latent print residue.

CONTROL TEST

Deposit an amino acid rich print onto a porous surface, process with Ninhydrin, and place into a humidified oven. A positive test will result in a purple-colored print.

PROCEDURE

Application of the Ninhydrin solution may be accomplished through spraying, brushing, or dipping. After treating the evidence with the Ninhydrin solution, allow it to dry at room temperature. A 24-
hour development period is recommended. Subjecting the item to a combination of heat and humidity can accelerate the reaction.

Preservation Method: Photography

5.1.12 NINHYDRIN HT

When attempting to chemically develop latent prints on thermal and carbonless specialty papers with standard Ninhydrin reagent, the papers often darken, possibly obliterating latent prints and any writing on the papers. The specialty paper Ninhydrin solution develops latent prints on these papers without turning them black.

CONTROL TEST

Deposit an amino acid rich print onto paper and process with Ninhydrin HT. A positive test will result in a purple print.

PROCEDURE

Spray or briefly immerse the specialty paper in the solution, remove, and dry. Place the treated paper in the dark, at room temperature for 48-72 hours. Heat should be avoided. Each page of carbonless paper should be processed individually.

Preservation Method: Photography

5.1.13 OIL RED O

Oil Red O is used on porous surfaces, including those that have been previously wet. Oil Red O is a hydrophobic dye which targets lipids in fingerprint deposits. Oil Red O should be used on dry or wet porous surfaces.

CONTROL TEST

Place a sebaceous-rich print on a porous surface, such as clean white paper. Process with Oil Red O. A positive control will give a red colored print.

PROCEDURE

First, immerse the evidence item in the stain solution and shake gently for 60 to 90 minutes. Usually, strong fingerprints will give good results after only 5-10 minutes. Remove the item from the stain solution and drain. Immerse the item in the buffer solution to adjust the pH. Let the item dry.

Preservation Method: Photography

5.1.14 PHYSICAL DEVELOPER

Physical developer is used on porous evidence and is effective on paper bags, currency, and items that have been subjected to moisture. Physical developer reacts with fats, oils, and waxes present in perspiration or on the skin surface.
CONTROL TEST
Deposit a sebaceous rich latent print onto a clean white paper or medium of choice and process with physical developer. A positive test will result in a gray/black print.

PROCEDURE
Immerse the evidence in Solution A for ten minutes or until no bubbles are coming from the paper. Then immerse the evidence in Solution B. Gently rock the dish until the latent prints develop into dark gray images. Remove the evidence when the background appears significantly darker or after twenty minutes. Immerse the item in distilled water and rinse until there is no yellow stain and the water runs clear. Wash in cold tap water for an additional five to ten minutes. Thoroughly dry the evidence.

Preservation Method: Photography

5.1.15 POLYCYANO UV
PolyCyano UV is a fluorescent cyanoacrylate. PolyCyano UV will cause latent print residue on non-porous and some semi-porous surfaces to appear white in color under white light and to fluoresce under blue/green light. Latent prints developed this way are not easily damaged.
PolyCyano UV has no detrimental effect on the recovery of DNA or on subsequent DNA profiles.

CONTROL TEST
Deposit a sebaceous rich print onto a non-porous substrate of choice and place it within the fuming chamber concurrent with the item being tested. A positive test will result in a cyanoacrylate developed control print. A second positive test will result in the fluorescence of the control prints when examining it with an alternate light source as directed in the Procedures. The results for each lighting condition shall be documented in the examiner’s notes.

PROCEDURE
Three level scoops of PolyCyano UV is recommended. Other variables such as fuming time, relative humidity, and size of fuming chamber may be adjusted as needed to ensure a positive reaction to glue fuming.
Examine the evidence within 24 hours, both with and without an alternate light source. When examining for fluorescence, use an alternate light source at 420-495nm with an orange viewing filter (the recommended wavelength is 495nm).
If the developed control print does not adequately fluoresce, the evidence will still be examined with the alternate light source as directed above and the failed control will be included in the report. The evidence items may be subsequently processed with powders and /or chemicals similar to those fumed with standard (non-fluorescent) cyanoacrylate.

Preservation Method: Photography

5.1.16 POWDER PROCESSING
Powder development techniques are used to develop friction ridge skin impressions on non-porous and semi-porous items. Powder development makes surface ridge detail visible and improves the contrast of already visible detail. This development technique facilitates preservation via imaging and lifting the impression.
The type of powder selected for processing will depend upon:
- The contrast with the surface on which impressions are to be developed.
• The nature of the surfaces to be processed.
• Any special application attributes of the powders available.
• The anticipated means of preservation (imaging or lifting).

Selecting the proper applicator is dependent upon:

• The type of powder used (magnetic wand with magnetic powder, etc.).
• The size of the area to be dusted (cotton ball, brush, etc.).
• The type of surface to be dusted (metal, sticky, etc.).

When there is any doubt as to the suitability of a powder for processing a surface, a test print can be made. A similar surface to the suspected surface should be used. If there is none available, then a small area of the suspected surface may be dusted with the most suitable powder, wiped clean, and used for testing. The test will be documented in the scientist’s notes and the test impression will be destroyed immediately after it has served its purpose.

PROCEDURE

DUSTING WITH POWDERS

The key to successful conventional powder application (dusting) is the use of a small amount of powder with a delicate touch. Touch only the ends of the brush bristles to the powder. The excess powder should be shaken or tapped off.

Use a smooth motion to guide the brush over the suspected area or over the barely discernible print while very lightly brushing the bristles across the surface. When sufficient ridge detail has been developed so that the direction of flow of the ridges can be observed, continued brushing should follow the ridge flow. Occasionally, in spite of all precautions, the powder will adhere so tenaciously to the object on which the latent is found that brushing will not remove the excess powder. If so, a lifting technique may be used to remove the excess powder (this process is discussed under Lifting Techniques).

Sometimes a latent print may be enhanced after the initial lifting by additional processing with brush and powder or the use of cyanoacrylate fuming and fluorescent dye stains.

The adherence of powder to a latent print can be enhanced by using the “breath technique”. Exhaling warm breath on a surface while dusting for latent prints sometimes adds moisture to the latent print residue, thereby enabling the powder to adhere to the ridge structure of the latent. All moisture, however, should be visibly evaporated from the surface prior to applying powder. This technique should only be utilized if DNA testing will not be pursued.

Proper use of the magnetic brush (wand) and magnetic powders is similar to the dusting procedure described for conventional powders. When the closed magnetic wand is inserted into the magnetic powder container the powders will be picked-up with the tip of the wand. The powders actually form a bristle-less brush. Only the powder “bristles” should touch the surface being processed, and not the wand itself. A light, smooth stroking motion is used in guiding the magnetic wand over the suspected area.

When the rod is pulled to a fully extended position the powder will be released from the tip. Excess powder should be removed from the processed area by passing the wand over the area without it actually making contact with the surface.

An alternate light source or laser will be required to examine areas that have been processed with fluorescent powders. Impressions developed with powders on a smooth surface may be preserved via imaging and/or lifting. Impressions developed on textured surfaces or with fluorescent powders should be preserved via imaging.
LIFTING TECHNIQUES

When using lifting tape to remove a developed impression, care should be taken in unrolling the tape from a roll so that hesitation creases do not occur. The unrolling should be performed in one smooth, continuous action.

The application of the lifting tape (or other lifting device) to the surface should also be in one smooth motion. The bulb of your finger or a rounded object may be pressed to the tape during application to preclude air bubbles and to ensure good contact with the lifting surface. Some bubbles can be eliminated effectively (without damaging the impression) by applying pressure with your finger (or other smooth, rounded object) to force the air pocket out at the edge of the tape. The lifting of the impression away from the surface should also be in a smooth continuous motion.

The lift shall be marked with the following:

- Date of lift
- Latent Prints Laboratory Case number
- Location of lift
- Name or initials of person making the lift
- Unique lift number

A diagram of the lift location on the object is recommended. An arrow indicating the direction of the lift is also valuable for determining the orientation of the impression(s) and how an object was touched or handled.

Any latent impressions appearing on the perimeter of the lift, deposited by the individual making the lift, shall be crossed-out and initialed.

5.1.17 POWDER SUSPENSION (STICKY-SIDE, WETWOP™)

Powder suspension is used to process the adhesive side of tapes, labels and other adhesive items for latent prints. The Wetwop™ solution can be used on various types of tapes, labels, Post-It® notes, stamps, bandages, rubber gloves (i.e. latex and nitrile), the non-adhesive side of various types of tape, and on Tyvek®.

CONTROL TEST

Deposit a print on a test medium of similar type and color as the evidence and process with the appropriate powder suspension technique. A positive test will result in a developed print in contrast to the background color.

PROCEDURES

"Sticky-Side" powder comes as a pre-packaged kit. Place about 1 teaspoon of Sticky-Side powder into a shallow container. Mix a 1:1 solution of water and Photo-Flo 200 and shake well. Slowly add this solution to the powder in a shallow jar until you have a paste with the consistency of thin paint. Use a brush to apply the liquid mixture onto the adhesive surface. Leave the liquid on the tape for no more than 10 seconds, and then gently rinse it off with water. The tape can be rinsed under running water, but the preferred method is to gently agitate it in a bowl of water. Allow the tape to dry at room temperature.
Wetwop™ is available in both black and white colors. Black can be used to process light colored, clear adhesive, and non-adhesive surfaces. White can be used to process dark colored and clear adhesive and non-adhesive surfaces. In some instances, both black and white solutions can be used in sequence to present contrast for better visualization of prints.

Remove and collect any foreign material from the item. If the adhesive substrate is wadded or stuck on another surface, attempt to remove and expose the adhesive surface. Shake the Wetwop™ bottle thoroughly and pour a small amount into a clean beaker or dish. Apply Wetwop™ with an appropriately sized brush, using a painting motion to completely cover the surface. Allow the Wetwop™ solution to stand on the adhesive or non-adhesive surface for 15-30 seconds, and then rinse the solution off with a gentle stream of tap water. For glove processing, rinse the Wetwop™ solution quickly to avoid background staining. Allow the evidence to dry.

Preservation Method: Photography

5.1.18 R.A.M.

RAM is a combination of the dye stains Rhodamine 6G, Ardrox-133D, and M.B.D. It is a fluorescent dye stain used for latent print luminescence in conjunction with alternate light sources (or a laser) and cyanoacrylate fuming on non-porous evidence. The dye stain does not develop friction ridge skin detail; it merely improves the contrast of cyanoacrylate enhanced prints.

CONTROL TEST

Utilize a positive test from cyanoacrylate processing or use a fumed sebaceous control print on a medium of choice and process with RAM. A positive test will result in a developed control print in contrast to the background color when viewed with the alternate light source or laser.

PROCEDURE

After the evidence has been processed by cyanoacrylate fuming, apply RAM by dipping, washing, or using a spray bottle. Allow the evidence to air dry.

Examine the evidence with the alternate light source or laser at 415nm-535nm using an orange filter.

Preservation Method: Photography

5.1.19 RHODAMINE 6G

Rhodamine 6G is a fluorescent dye stain used for latent print luminescence in conjunction with alternate light sources (or a laser) and cyanoacrylate fuming on non-porous evidence. The dye stain does not develop friction ridge skin detail; it merely improves the contrast of cyanoacrylate enhanced prints.

CONTROL TEST

Utilize a positive test from cyanoacrylate processing or use a fumed sebaceous control print on a medium of choice and process with Rhodamine 6G. A positive test will result in a developed control print in contrast to the background color when viewed with the alternate light source or laser.
PROCEDURE

After the evidence has been processed by cyanoacrylate fuming, apply the Rhodamine 6G working solution by dipping or by using a spray device or squirt bottle. Allow the evidence to dry.

Examine the evidence with the alternate light source or laser at 495nm-540nm using an orange filter.

Preservation Method: Photography

5.1.20 SILVER NITRATE

Silver Nitrate can be used on porous surfaces (i.e. wood) that have not been wet. It reacts with chlorides present in latent prints to form a dark gray deposit once exposed to light. Silver Nitrate should be used after Ninhydrin if processing with both.

CONTROL TEST

Deposit a sweat or saline covered finger onto a porous surface and process with Silver Nitrate. A positive test will result in a developed print in contrast to the background color.

PROCEDURE

Immerse the evidence in the solution for a maximum of five seconds. Allow the evidence to dry completely in the dark. The evidence can also be exposed to sunlight or a UV light source at 366nm and observed until the best contrast is observed. Store the evidence in the dark until imaged.

Preservation Method: Photography

5.1.21 SMALL PARTICLE REAGENT

Small Particle Reagent (SPR) is a suspension of fine Molybdenum Disulfide particles in detergent solution. This process can be used on wet, non-porous surfaces. SPR adheres to fatty constituents of latent prints to form a gray deposit.

CONTROL TEST

Deposit a sebaceous rich print onto a white lift card or substrate similar to the evidence being processed and process with SPR. A positive test will result in a gray/black print against the background.

PROCEDURE

Bath method: Shake the container of SPR working solution and pour enough of the solution into a tray or tank to cover the evidence to be processed. Stir the solution thoroughly to ensure that all powder is suspended in the liquid and immerse the evidence immediately. Keep the evidence stationary at the bottom of the dish for approximately 30 seconds and then remove it carefully. A thick gray film will be seen coating the evidence item’s surface. Invert the evidence and gently draw it across the surface of tap water in a second tray or tank of similar size. Agitate the evidence gently. The grey film should wash off, revealing developed latent print detail. Allow the evidence to dry at room temperature.
Spray method (If being used outside during rain, shelter the area to be treated from direct rainfall.): Shake the container of working solution and fill the spray bottle, shake well and adjust the nozzle to give a cone-shaped jet. Spray the area to be examined starting at the top and working downwards. If signs of latent print development appear, continue spraying just above the relevant area until there is no further buildup of gray deposit. If it is necessary to remove excess powder from developed prints, spray water gently above developed prints with a second spray bottle. Allow the surface to dry.

Preservation Method: Photography

5.1.22 SUDAN BLACK

Sudan black is a dye stain that is used to process non-porous surfaces contaminated with grease, foodstuffs, or dried deposits of soft drinks and will also enhance cyanoacrylate developed latent prints. This process is ineffective on dark or printed plastic surfaces. Sudan black stains fatty components of sebaceous secretions to produce a blue-black print.

CONTROL TEST

Deposit a sebaceous rich print onto a white lift card or medium of choice and process with Sudan black. A positive test will result in a developed print in contrast to the background.

PROCEDURE

Immerse the evidence in the working solution or float on the surface for two minutes. Rinse the evidence under cool, gently running tap water until excess dye has been removed from the background and allow to dry at room temperature.

Preservation Method: Photography

5.1.23 TAPEGLO™

TapeGlo™ is used to process the adhesive side of tape (i.e. plastic-backed, cloth or paper-backed adhesive tape) for latent prints. It is a reusable fluorescent dye stain used for latent print luminescence in conjunction with alternate light sources.

CONTROL TEST

Deposit a print on a test medium of similar type and color as the evidence and process with TapeGlo™. A positive test will result in a developed print in contrast to the background color.

PROCEDURE

Place the tape adhesive-side up in a tray or dish. Application of TapeGlo™ may be accomplished through spraying, brushing, or dipping. After completely covering the adhesive side, allow the solution to remain on the surface for ten to fifteen seconds. Gently rinse the surface.

Examine the evidence with the alternate light source at 450nm using an orange filter.

Preservation Method: Photography
5.1.24 DEVELOPING LATENT PRINTS ON HUMAN SKIN

LIFT TRANSFER METHOD:

For live victims, a piece of black plastic or RC photo paper developed as black can be held against areas suspected as possibly bearing latent prints. Other nonporous surfaces such as a mirror, glass, or metal plate may be used instead of photo paper. A sponge or soft pad should be placed between the scientist’s hand and the photo paper to improve contact with the victim’s skin.

Hold the transfer surface against the skin for 15 to 20 seconds. The nonporous transfer surface should then be cyanoacrylate fumed to develop latent prints which may have transferred. Condensation on the body is acceptable as any water in the latent print residue will aid polymerization with cyanoacrylate fumes.

After cyanoacrylate fuming, further development of the nonporous transfer surface should include luminescent dye stain, alternate light source excitation, and (lastly) powder rubbing.

For deceased victims, the body’s skin surface should be between 72 and 80 degrees for optimal fatty/waxy impression transfer. Warm the lift card or other transfer medium with a portable hair dryer just before lifting (warming it to above 86°F has been suggested by some researchers).

CYANOACRYLATE FUMING CADAVERS:

Ideally the body should not be refrigerated prior to fuming because moisture can destroy impressions that might otherwise be developed. If already refrigerated, permit all condensation moisture to evaporate upon removing the body from the cold locker/drawer.

An airtight plastic tent can be assembled over the body and fumed with cyanoacrylate. A small, battery powered fan may be used to help with fume distribution.

After fuming, dust the body using a contrasting color powder. Developed impressions shall be imaged for preservation.

5.2 RECORDING FRICTION RIDGE EXEMPLARS

When called upon to record finger and palm print exemplars, the scientist shall record all friction ridge detail which may be required for comparison. Major case prints consist of recordings of all the friction ridge detail present on the palmar surfaces of the hands and the inner surfaces of the fingers. If necessary, friction ridge detail on the bottom of the feet and toes may also be recorded.

Exemplars should be recorded with black ink on a white background card whenever possible. An 8" x 8" template card is preferred, but not required.

When completed, each page of the exemplars must be signed and dated by the person recording the exemplar(s). The source of the exemplars must be noted on each card and should also be signed by the donor.

5.2.1 SUSPECT, VICTIM, AND ELIMINATION PRINT EXEMPLARS

The area of the friction ridge skin being recorded should be thoroughly washed. Firmly roll a thin, even film of ink over the entire surface being recorded.

Fingers shall be recorded by rolling from each edge of the fingernail to the other and should include the entire joint from the palm to the fingernail. The tips of the fingers may also be
recorded by placing the inked tip along the fingernail on the card at a 45° angle and shifting from one side of the tip to the other. Record friction ridge skin formations from the fingers in order, beginning with the right thumb and proceeding through the fingers of the right hand and then concluding with the left thumb and proceeding through the fingers of the left hand. The exemplars must be labeled immediately to clearly indicate which finger is which.

Palms are best recorded using a cylindrical object 3 inches or more in diameter. The card shall be positioned around the cylinder and held in place with a rubber band around each end. The inked heel of the palm is placed on the edge with fingers together and pointed straight ahead. Roll the cylinder backwards with the palm of the subjects hand until the tip areas of the fingers are recorded. If a cylindrical object is not available, the inked hand may be recorded with a stamping action onto the center of the card (be sure to place adequate pressure in the raised/cupped center of the hand). Record the edges of the hypothenar and thenar areas with a stamping action on the white card just outside those respective areas on the previously recorded palm print.

Foot prints may be recorded in a manner similar to the palms, either by rolling the foot from the heel to the toes or by stamping straight down onto a white card. Be sure to have a large enough card or piece of paper to record the entire surface of the friction ridge skin.

5.2.2 DECEASED PERSON EXEMPLARS

If possible, the procedures for recording suspect, victim, and elimination print exemplars should be followed. In most cases, however, unique measures will be required to adequately record friction ridge detail of deceased persons.

The area of the friction ridge skin being recorded should be thoroughly washed. In cases where rigor and decomposition have affected the pliability of the skin, the area being recorded may be hydrated by injecting water or embalming fluid under the surface. In some cases, the outer layer of the skin may be removed and similarly cleaned and hydrated in preparation for recording the friction ridge skin detail. The scientist shall determine the best means for preparing the skin.

In lieu of rolling ink onto the friction ridge skin, fingerprint powder may be applied using a standard fingerprint brush. If powder is used, or if the inked area cannot be recorded directly onto a contrasting card, the friction ridge detail may be recorded by applying clear or frosted lift tape to the surface of the skin, removing it, and placing it on a piece of transparent plastic. The recorded area may then be attached on the exemplar card with the transparent plastic covering the lift tape (the print must be examined with the adhesive side of the tape facing the examiner).

If the described methods are unsuccessful in obtaining the necessary exemplars, digital imaging may be employed to record the friction ridge skin detail.
6.0 DIGITAL IMAGING

Digital imaging technology is used to preserve, document, and analyze impressions which have the potential to be of evidentiary value. Images generated for the purpose of examination will be captured, stored, and documented in the chain of custody. Images generated for the purposes of orientation and documentation will be retained in the case record.

6.1 IMAGE CAPTURE

Examination quality images are to be captured in uncompressed formats at a calibrated resolution exceeding 1000 ppi unless documented circumstances prevent capturing the image at that resolution. Examination quality images of impressions should include a scale on the same plane as the impression.

Orientation images may be captured in a compressed format.

6.2 DIGITAL IMAGE STORAGE

Original digital image files will be saved to a permanent storage device – preferably a CDR or DVD-R, but a memory card such as a Secure Digital (SD) or Compact Flash (CF) may also be used if necessary.

Examination quality images will be saved in the same format in which they were captured. The unaltered saved images will be considered the original images. The media will be marked with the date it was created, the CLD case number, scientist's initials and the number of original images. The media will become generated evidence (see CLD LIMS Manual) to be provided to the requesting agency.

Copies of the image files will also be stored in the DIS and will be considered part of the case record.

All printed copies of digital images are considered working copies.

6.3 IMAGE ENHANCEMENT

No enhancement work shall be done on an original image, only on a copy of an original image. Image enhancement techniques employed by a scientist must be explainable and within the scope of their training.

The processing steps for enhancements of examination quality images will be documented in the case record. The resultant enhanced image will also be retained in the DIS or on digital media.
7.0 FRICITION RIDGE IMPRESSION EXAMINATIONS

Friction ridge impression examinations are conducted by examiners using the Analysis, Comparison, Evaluation, and Verification (ACE-V) methodology in consideration of both qualitative and quantitative aspects. ACE is not generally applied as a strictly linear process because it may include a return to any previous phase. Application of ACE-V includes observations, measurements, assessments, decision-making, and documentation supported by the education, training, skill, and experience of the examiner.

The examination of friction ridge impressions and the resulting conclusions are based on ridge flow and ridge paths; the location, direction, and spatial relationships of minutiae; and ridge structure. The analysis phase leads to the determination of suitability for comparison, leading to an evaluation which may conclude in identification or exclusion, or shall be determined to be inconclusive. These conclusions are based on the following premises:

- Friction ridge skin bears an extremely complex, unique, and persistent morphological structure.
- Notwithstanding the pliability of friction ridge skin, the contingencies of touching a surface and the nature of the matrix, an impression of friction ridge skin structure may be left following contact with a surface.
- This impression may display features of varying quality and specificity.
- Notwithstanding variations in clarity and specificity, the unique aspects of friction ridge skin contain highly discriminative features.
- An impression that contains sufficient quality and quantity of friction ridge features can be identified to, or excluded from, a source.
- The use of a fixed number of friction ridge features as a threshold for the establishment of an identification is not scientifically supported.

7.1 SCOPE

The ACE-V methodology is applied to examinations and comparisons of friction ridge impressions. This section applies not only to the more common comparisons of unknown to known impressions, but is also applicable to known to known and unknown to unknown comparisons. The application of the ACE-V methodology to casework requires examiner competency as established through the Latent Prints Training Manual and Crime Laboratory Division Quality-Operations Manual.

7.2 FACTORS AFFECTING EXAMINATIONS

The following factors affect the qualitative and quantitative aspects of friction ridge impressions. A competent examiner will understand these factors, recognize that they occur in friction ridge impressions, and understand how they influence friction ridge impression reproducibility. Failure to properly assess the occurrence and influence of these factors could result in misinterpretation. When applicable, the following factors must be considered in all steps of the ACE-V methodology:

- Anatomical aspects include the condition of the skin (e.g., scars and warts) and the morphology of the hand and foot relative to the shape and contour of the substrate.
• Transfer conditions include pressure applied during transfer, slippage or twisting, sequence of deposition (i.e., double taps and overlays), and an understanding of the limitations of friction ridge pliability.

• Matrix includes bodily secretions and contaminants (e.g., sweat, blood, paint, dirt, oil, grease).

• Detection techniques that can be one or more of the following: optical (i.e., light sources and illumination techniques), physical, or chemical processing techniques.

• Recording or preservation techniques, such as photography, lifting, live-scan, and ink.

• Substrate (e.g., porous, non-porous, semi-porous, smooth, rough, corrugated, pliable, or textured surfaces).

• Environmental conditions (e.g., protected, unprotected, wet, dry, cold, or hot).

7.3 LEVELS OF FRICTION RIDGE IMPRESSION DETAIL FOR EXAMINATIONS

The ACE-V methodology of friction ridge impression examination utilizes a qualitative and quantitative assessment of Level 1, Level 2, and Level 3 details. Level 1 detail refers to the overall ridge flow and may include pattern interpretation. Level 2 detail refers to individual friction ridge paths, friction ridge events (e.g., bifurcations, ending ridges, dots, and continuous ridges), and their relative arrangements. Level 3 detail refers to ridge structures (edge shapes and pores), and their relative arrangements. Creases, scars, warts, incipient ridges, and other features may be reflected in all three levels of details.

7.4 PROCEDURE FOR FRICTION RIDGE IMPRESSION EXAMINATIONS (ACE-V METHODOLOGY)

7.4.1 ANALYSIS

Analysis includes the assessment of an impression to determine its suitability for comparison based on Level 1, 2, and 3 details and other relevant information as described in this chapter. This assessment also includes the possible anatomical origin and orientation of the impression. Additional analysis involves the recognition and documentation of anatomical aspects and features to be considered in any subsequent comparison. Analysis determines if the impression is suitable for comparison.

The analysis may also provide anatomical information to prioritize the potential corresponding areas and limit unnecessary comparisons. Certain orientation indicators such as recurves, deltas, creases, and scars may provide specific guidance as to where to begin the comparison.

Determination of Suitability

Suitability for comparison is the determination that there is adequate quality and quantity of friction ridge features in an impression for either identification or exclusion upon comparison to a corresponding suitable impression. The assessment is based on the quality of features (clarity of the observed features),
the quantity of features (amount of features and area), the specificity of features, and their relationships.

Quality

Quality is the assessment of the clarity of ridge features. Generally, as quality increases so does the discernibility and reliability of the ridge features. It is recognized that quality is not necessarily constant throughout an impression. The assessment of quality may represent just the areas of highest quality, a range of qualities, or a map or rating system of quality of various regions in a single impression.

Table 1 shall be used for categorizing the levels of quality of the features in an impression (unknown or known). The level of quality determines the degree of tolerances that will be used during the comparison process. High quality will lead to low tolerances and conversely low quality will require high tolerances.

Tolerance is the allowance of variation in appearance of friction ridge features that will be accepted during comparison, should the corresponding print be available.

There are subjective as well as objective elements to this categorization, but the descriptions provided in the table should allow a meaningful quality description to be made.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Level 1 is distinct; Level 2 details are distinct; There are abundant distinct Level 3 details</td>
</tr>
<tr>
<td>Medium High</td>
<td>Level 1 is distinct; Most of the Level 2 details are distinct; There are minimal distinct Level 3 details</td>
</tr>
<tr>
<td>Medium Low</td>
<td>Level 1 is distinct; Few of the Level 2 details are distinct; There are minimal distinct Level 3 details</td>
</tr>
<tr>
<td>Low</td>
<td>Level 1 may not be distinct; Most of the Level 2 details are indistinct; There are no distinct Level 3 details</td>
</tr>
</tbody>
</table>

Table 1: Categories of quality defined as a function of levels of details observed.

The utility of these categories is to assist in the analysis of suitability and subsequent evaluation and verification. The quality assessment should not be considered as the sole criteria for a decision threshold.

Quantity

Quantity, as applied in this section, is the number of ridge endings, bifurcations, and dots (minutiae) in contiguous ridges and other unique features, if present, such as scars, creases, and incipient ridges. All features are considered here, including indistinct features for which type or exact location cannot be established.
The utility of the quantity of features is to assist in the analysis of suitability and the recognition of alternative levels of case complexity as they relate to sufficiency with subsequent evaluation and verification. The quantity of features should not be considered as the sole criteria for a decision threshold.

Designating Impressions for Comparison

Any impression that is potentially suitable for identification will be designated for comparison. Impressions suitable for exclusion only will not generally be considered, but may be designated for comparison at the examiner’s discretion or upon a specific request by the submitting agency.

No additional analysis will be required for any impressions that are not designated for comparison. If an impression is designated for comparison, more comprehensive analysis determines the features and their tolerances to be used in the comparison.

An impression must go through a documented analysis and be given a unique identifier prior to being compared. The schema for unique identifiers for designated impressions should be distinct from the unique image and lift card identifiers.

Documentation of Impressions Designated For Comparison

An impression designated for comparison will be given a unique sequential identifier. The unique identifier for each impression will be marked in close proximity to the impression on copies of the lift or printed image. It is also recommended that the unique identifiers be marked on lifts, printed images, or within generated digital images returned to submitting agencies. Copies of annotated lifts or images will be retained in the case record.

A quality assessment (using Table 1) will be noted. The complexity of the impression as described below will dictate the extent of the documentation:

- **Non-complex** – High or Medium High quality with a plainly sufficient quantity of features. Only the minimum documentation of the relevant features that may be used as a basis for a conclusion is required.

 An impression categorized initially as non-complex may be re-classified as complex if the following modifying factors are present: low specificity of features, significant distortion (e.g., multiple tap, superimposed impression, extreme pressure leading to tonal reversal, and slippage), high tolerances, or the original conclusion is contested during verification.

- **Complex** – Low or Medium Low quality with uncertain sufficiency of the quantity of features. Extensive documentation of the relevant features used as a basis for a conclusion is required.

 An impression categorized initially as complex may be re-classified as non-complex if modifying factors are present such as high specificity of features, presence of creases, scars, and open fields.

- **Justification for reassignment of complexity shall be documented.**
Minimum documentation of analysis includes the following, if known:

- Anatomical source (e.g., fingerprint, palm print)
- Anatomical orientation (e.g., distal direction)
- Presence of level 1 detail
- Presence of level 2 detail
- Substrate
- Development medium
- Preservation method (e.g., lift, photograph, legible copy)

Extensive documentation of analysis includes the following, either through narrative or image mark-up:

- Minimum documentation requirements
- Additional factors, if known, such as matrix, deposition pressure, lateral movement, rotational movement, level 3 detail, or other friction ridge skin detail (e.g., creases, scars)
- The location of sufficient level 2 features to establish at least one target group for comparison and/or reach a conclusion of identification or exclusion

Image mark-ups shall be clear in their intent or color-coded. When a color-coded image mark-up is utilized, the following key should be used:

- Red – unclear areas of ridge flow
- Yellow – debatable minutiae
- Green – definitive minutiae
- Blue – definitive ridge edges and pores
- Cyan – scars and creases

Ridges may be traced using any semi-transparent color

Note: If a different color scheme is used, it shall be documented in the case notes

A legible copy of the unmarked latent print shall be retained in the case record.

Analysis documentation of a latent print designated for comparison shall be completed prior to comparison.

Documentation of Impressions Not Designated For Comparison:

The presence of impressions assessed but not designated for comparison shall be documented in the case notes. Documentation may be accomplished by making a “no value” notation (e.g., “NV”) on the legible copy retained as part of the case record or by indicating in the case notes that “no value” impressions are present on a lift or photograph. No further documentation of the assessment is required.

Analysis Consultation
Any discussion that goes beyond minimal analyses which have potential to impact the key decision stages will be considered consultations that must be documented. An interaction is considered significant when the second examiner conducts a complete analysis of an impression. Interactions that do not rise to the level of consultation would include ABIS suitability and parameters, search clues, anatomical origin, simultaneity of impressions, and orientation.

If there is doubt whether a discussion has risen to the level of a consultation, it should be treated as a consultation. A consultation must be documented with the specific impression(s) discussed, the nature and result of the consultation, date, and initials of the consultant.

7.4.2 COMPARISON

Comparison is accomplished through the side-by-side observation of two or more impressions using all levels of details to determine whether the impressions are in agreement or disagreement based upon features, sequences, and spatial relationships within the tolerances of clarity and distortion.

Comparison of impressions known to be from different anatomical sources is unnecessary. If a comparison cannot be completed because the exemplars required for a conclusive comparison are not available, the necessary exemplars should be requested to either complete the current request or for a possible subsequent request.

If the anatomical source of one or more of the impressions being considered is unknown, all possible areas shall be compared.

Documentation of Comparisons

Documentation that records the information relied upon during comparison shall be made for each comparison.

If re-analysis of the latent print during comparison results in new information, supplemental notes shall be added and dated.

If an impression is re-analyzed in the comparison process and determined to be unsuitable for comparison, the notes must reflect that the comparison was attempted and the reason for vacating the comparison.

A legible copy of known prints used for comparison will be retained in the case record. The origin of the exemplars will also be documented in the case notes if they were obtained from any source other than being printed on site from the WIN archives.

Known prints that are deemed insufficient for comparison, or that contain any factors that adversely affect the comparison, shall be documented. The quality and quantity of the information present will dictate the extent of the documentation. These factors include:

- Incomplete recording of the friction ridge skin
- Missing anatomical sources (e.g., palms, areas of fingers)
- Unclear recording of the friction ridge skin

When a color-coded image mark-up is utilized to document a comparison, the following key should be used:
- Orange – Clear corresponding features
- Purple – Corresponding features in a target area

Note: If a different color scheme is used, it shall be documented in the case notes

Comparison Consultation

A consultation must be documented with the specific comparison(s) discussed, the nature and result of the consultation, date, and initials of the consultant. An interaction is considered a consultation when the second examiner conducts a comparison of an impression and discusses it with the first. If there is doubt whether a discussion has risen to the level of a consultation, it should be treated as a consultation.

7.4.3 EVALUATION

Evaluation is the formulation of a conclusion based upon the analysis and comparison of friction ridge impressions. An examiner will evaluate whether an impression is from a different source or the same source as the compared impression, or if the features between the compared impressions are insufficient to either identify or exclude (inconclusive).

Identification

Identification is the opinion of an examiner that there is sufficient quality and quantity of detail in agreement to conclude that two impressions originated from the same source.

The standard for identification is a demonstrable and justifiable consistency between two impressions. Identification of an impression to one source implies that the likelihood the impression was made by another source is so remote that it is considered a practical impossibility.

The identification of a source of an impression is considered a significant result. Further comparisons of the impression to listed subjects is not necessary.

Exclusion

The opinion of an examiner that there is sufficient quality and quantity of detail in disagreement to conclude that a known subject could not be the source of an impression, or that two areas of friction ridge impressions did not originate from the same source.

The standard for exclusion is a demonstrable and justifiable inconsistency between the unknown impression and all relevant anatomical areas of the known subject. Exclusion of a subject can only be concluded if all relevant anatomical areas are represented and legible in the known exemplars. In addition, the distal orientation of an unknown impression should be reliably determined in conjunction with the observed Level 1 and 2 details for exclusion to be considered. If the specific anatomical area has been established in analysis, but the orientation is not reliably determined, a range for searching up to 360° may be conducted if documented as such, and may be sufficient for exclusion.
Case notes and reports shall clearly state if the exclusion refers only to the source or the subject.

Level 3 details cannot be the sole factor to eliminate a source.

Inconclusive Evaluations

If an unknown impression cannot be excluded or identified, the evaluation shall be considered inconclusive. Inconclusive evaluations may be the result of poor quality exemplars, uncertainty in the distal orientation or anatomical source of an unknown impression, or upon determination in comparison that the detail in an unknown impression is insufficient to either identify or exclude the subject of a comparison.

Documentation of Conclusions:

All comparison results (identification, exclusion, inconclusive) shall be documented and will include the unique impression identifier, unique identifier or name on the exemplars (as appropriate, see below), anatomical source(s) identified or excluded (if applicable), initials of the examiner, and the date the conclusion was reached. The reason for each inconclusive evaluation shall also be documented.

- For known exemplars that have been obtained by the scientist - documentation shall include state identification number (or other identification number such as the FBI identification number) and should also include the subject name if available; additional information such as date of birth, date of arrest should also be documented.

- If numerous exemplars are submitted or obtained for the same individual a brief descriptor (e.g., last four digits of the TCN) or sequential indicator (e.g., K1, K2, K3…) shall be used to differentiate the exemplars

- For known exemplars that have been submitted – documentation shall include the item number (contributing agency or CLD item number) and should include additional information such as name and state identification number or date of birth.

In rare instances a request can be made to compare two unknown impressions. In these instances the unique identifier of each impression, initials of the examiner reaching the conclusion, and the date the conclusion was reached shall be documented.

Documentation to support the conclusion shall be such that another competent examiner could evaluate what was done and interpret the conclusion. The documentation must be sufficient to demonstrate the basis upon which the conclusion was based. This may include a combination of written notes and printed images (freehand markings on printed images are acceptable, provided they are clear and unambiguous. Image mark-ups shall be clear in their intent or color-coded).

7.4.4 VERIFICATION

Verification is the independent examination by a competent examiner to ensure that the original examiner came to a valid conclusion. This is an independent application of the ACE process to either support or refute the conclusions of the original examiner.
All identifications shall be verified by two competent examiners. All exclusions need only be verified by one competent examiner. If an impression is identified, any exclusions to the impression do not need to be verified unless that exclusion is specified in the report.

If the verifier believes that another conclusion would be more appropriate they will discuss the conclusion with the examiner. However, all erroneous identifications or exclusions will first be reported to the examiner’s supervisor.

Conflict resolution shall take place in accordance with the CLD Quality-Operations Manual if the original conclusion is contested and cannot be resolved through consultation.

Documenting Verifications

If the verifier determines the conclusion of the primary scientist is valid, the verifier will annotate their initials and the date the conclusion was verified. The verifier must document if they used different exemplars than the primary scientist, and those exemplars must be retained in the case file.

If the verifier comes to a different conclusion than the primary scientist, documentation supporting the verifier’s conclusion will be retained in the case record. The documentation shall consist of either a) marked images demonstrating consistencies or inconsistencies between the compared impressions, or b) a notation explaining why the source cannot be identified or excluded as concluded by the original examiner. The marked images or notation shall include the date and verifier’s initials.

8.0 FRICTION RIDGE SKIN DATABASE SEARCHES

The WSP utilizes two computer software systems to facilitate the search of friction ridge skin impression databases – the Automated Biometric Identification System (ABIS) and the Universal Latent Workstation (ULW). These systems are used in the Latent Print discipline primarily to search suitable unidentified impressions against on-file records. Both systems return a list of candidate exemplar images for review.

WSP is a member of the Western Identification Network (WIN), a consortium of multiple western states, referred to as central sites, sharing a common database. WSP contracts with WIN to operate the ABIS database and software. In addition to the central site members, access may be provided to other state and local databases through the WIN ABIS (e.g. California DOJ, and the FBI’s NGI).

The FBI NGI database may also be accessed through the Universal Latent Workstation (ULW) software.

ABIS and NGI are password protected. Forensic Scientists assigned to the latent prints functional area are allowed access these databases.

8.1 REFERENCES

The current software instructions, vendor training materials, and guidelines can be consulted for system operating instruction and best practices as necessary.
The following documents are located on the Western Identification Network Training Reference Library internet page: (http://secure.winid.org)

- WIN 2008 AFIS Latent Best Practices
- WIN 2008 Latent Inquiry Quick Reference Guideline
- NEC User Guides
- NEC Core and Axis

The following document is located on the ABIS computer terminals.
- IBW Latent User Guide

ULW operating guides are available within the ULW software.

8.2 DEFINITIONS AND TERMS

CANDIDATE: An individual’s finger or palm print record under consideration for comparison to the latent print.

DATABASES: Various databases available to the Latent Prints discipline for searching friction ridge skin impressions. For example: WIN, CAL-DOJ, and NGI.

ESSO (External Search System Other): ESSO’s are other databases that are searchable through the WIN system but are not part of the WIN or NGI system.

Integra ID: NEC ABIS software

LI: Latent Inquiry

LI-P: Latent Inquiry - Palm

LR: Latent Registration in the Unsolved Latent Database

NEC: Current vendor for WIN

NGI: Next Generation Identification

TLI: Ten-print to Latent Inquiry – ABIS function that performs a search of all ten fingerprints input against the finger portion of the Unsolved Latent Database.

TLI-P: Palm to Latent Inquiry – ABIS function that performs a search of palm prints input against the palm portion of the Unsolved Latent Database.

ULW: Universal Latent Workstation, FBI NGI latent input software

8.3 SUITABILITY FOR DATABASE SEARCHING

The criteria used to determine if impressions contain sufficient quality to be considered for search of friction ridge skin impression databases are described in the respective user guides. At a minimum, impressions containing the following criteria should be searched:
1. The core and axis of a fingerprint, or distal orientation for a palm print, are reliably determined.
2. There are a minimum of 10 encodable (system acceptable) minutiae (within the inner pattern area when assessing suitability of a fingerprint).
3. The pattern type of a fingerprint is reliably determined to within one reference pattern.

ABIS/NGI searches may be deferred based on case circumstances. Justification of deferral must be documented in the case notes.

8.4 SEARCH, REGISTRATION, AND DOCUMENTATION

Impressions will be searched through databases as described in the respective system user guides.

The scientist has the discretion to determine the extent to search available databases. Impressions from cases of crimes against persons will be searched in the WIN and NGI databases.

A negative result means that no matching print was located in the searched database; it does not mean that no matching print exists in the database. Negative results are not verified.

Impressions searched with negative results will be registered into the WIN unidentified latent database (unless later identified). Scientists may also register impressions into the NGI unidentified latent database at their own discretion.

8.5 CASE DESCRIPTION INFORMATION

When entering a new case into the IBW the following information will be entered:

1. An ABIS case number. The laboratory case number will be incorporated into the ABIS case number. The laboratory case number follows the state and originating agency codes.
 - For example, the ABIS case number for laboratory case number 555-1234, searched from Olympia, would be WA0155501234, or if searched from Cheney, would be WA1755501234.
2. Date of crime
3. Crime

When entering a new case into the ULW, the CLD case number must be included.

8.6 SCREENING SEARCH RESULTS

The scientist will examine no fewer than the top ten candidates generated for each search, unless one of the candidates is identified as the source of the impression. The appropriate exemplars for any candidate which cannot be eliminated on screen shall be obtained for comparison, if available.
8.7 DOCUMENTING SEARCHES AND REGISTRATION

The extent of the database searches and the search results must be documented in the case notes. The first page of the verification report for each ABIS search will be retained in the case notes. If the search results are negative, a screen print of the top candidate for each database inquiry will also be retained in the case notes.

For ULW searches, a screen print of the side-by-side images of the search impression and the top candidate must be included in the case notes. The comparison and exclusion of printed exemplars of ABIS candidates are part of the ABIS search results and do not need to be specifically reported. However, printed exemplars of excluded ABIS candidates will be annotated as such and retained in the case record.

The registration of impressions into the WIN and NGI unidentified latent databases must be documented. A reason will be documented in the case notes for an impression searched but not registered (unless identified).

8.8 TENPRINT TO LATENT INQUIRY (TLI)/UNSOLVED LATENT DATABASE

Registered latent print impressions are automatically searched against newly submitted known exemplar records as they are added to the respective databases. Scientists are responsible for periodically reviewing (at least monthly) the electronic TLI notices. If a TLI search produces a possible candidate, the scientist will contact the agency who submitted the previously registered impression to determine if further action is necessary.

Registered impressions may be deleted from the system manually or automatically due to the impression being identified, by agency request, or the case exceeding the statute of limitations.

8.9 WIN ABIS PERFORMANCE CHECK

A WIN/NEC developed performance check will be performed quarterly by the LP Technical Lead, LP Supervisor, or a designated individual. This test verifies that all components of the system, including matching algorithms, are operating within WIN standards. The supervisor will be notified if a performance check does not return the expected result.

The following procedure will be used for performing the performance check (at least one QA print will be searched from each terminal):

1. Import the WIN QA print
 a. Enter an ABIS case number that incorporates the date following the state, originating agency code, and the two letters PC (for performance check).
 ▪ For example WA01PC010215
 b. Enter an evidence number (e.g. E1)
 c. Enter the latent number (e.g. PCW1)
 d. Click the check to enter the case

2. While still in the LCMS screen select the case and the imported latent number, followed with selecting latent inquiry
 a. Submit the search without changing any of the search parameters.
b. Check that the results are consistent with the expected results listed on the Control Key provided by WIN.

3. Document the results of the Performance Check on the Latent Print Section ABIS Quality Control Log

4. The job will then be killed and purged from the IBW job queue

9.0 REPORTING

Reports should follow the Latent Prints Report Writing Guide, which includes recommended formatting, terminology, phrasing, and disclaimers which comply with the provisions of this chapter and the CLD Quality-Operations Manual. It is recognized that many unique or complex situations may justify variations for the sake of clarity.

The report may be written in JusticeTrax LIMS using the analytical module or another word processing program. The report header must contain the relevant information from the RFLE in a format similar to the LIMS module-created report. Refer to the CLD LIMS Operations Manual.

Results and/or conclusions for each item of evidence and/or each comparison must be addressed in the report. If examinations are limited due to case circumstances, those limitations must be described in the report. In addition to the CLD Quality-Operations Manual, the report must address the following main categories, if applicable:

1. The techniques used in latent print development on each item of evidence and the overall processing results (i.e. images and/or lifts, if any).

2. Statement that submitted items were not examined.

3. Statement that friction ridge impressions were analyzed.

4. Impressions designated for comparison and the source item (submitted for processing or submitted lift/image) on which they were located.

5. Statement that comparisons were done and the resultant conclusions. The name of all subjects compared must be cited, and the source of the exemplars must be clear. If any subject is identified as the source of any impressions, the state identification (SID) or FBI number must also be cited, if known.
 a. When reporting identifications, associate the impression identifier with the name on the exemplar(s) and the correct anatomical source.
 b. If any identification is reported, the definition shall be included in a glossary at the end of the report.
 c. If the source of an impression is identified, the exclusion of any other subject(s) does not need to be reported. Note: If any exclusion(s) of an impression later identified is reported, the exclusion(s) must be verified.

6. Comparisons not conducted, stating the reason:
 a. Exemplars for the correct anatomical source of the impression have not been provided or located in the search files.
 b. Impressions assigned a unique identifier which were not designated for comparison (i.e., subsequently determined unsuitable for comparison).

7. ABIS—impression suitability, search results, registration

8. Information needed to complete case (such as better exemplars)
9. Final disposition of evidence
10. Laboratory generated digital media with images (including the number of images), latent lift cards, or other evidence

9.1 TERMINOLOGY

Terms listed in SWGFAST (dissbanded Scientific Working Group on Friction Ridge Analysis, Study and Technology) Document #19, Standard Terminology of Friction Ridge Examination, are preferred for use in reports. This document can be found in the list of Discipline-Specific Baseline Documents at the Organization of Scientific Area Committees (OSAC) for Forensic Science (Friction Ridge Subcommittee) website (click here).

10.0 PEER REVIEW

Peer reviewers shall follow the procedures described in the Quality-Operations Manual. Review procedures specific to the Latent Prints functional area are described below.

10.1 TECHNICAL REVIEW

Technical Review may be conducted simultaneous to or subsequent to verification. The Latent Prints Case Review Checklist shall be used to assist in ensuring compliance with all procedures, as well as the documentation and reporting requirements described herein.

The reviewer shall ensure that all unidentified impressions suitable for an ABIS search have been appropriately searched, or that an explanation for not searching the impression(s) has been included in the report. The reviewer shall check all search parameters and permutations, and will evaluate those candidates printed according to the procedures outlined in this manual. The reviewer will notify the assigned scientist if additional searches are needed.

The reviewer shall ensure that the Conclusions and Verifications Worksheet is completed to the level of verifications performed, and that sufficient documentation to support all comparison results is in the case record.

10.2 ADMINISTRATIVE REVIEW

Administrative Review may be conducted simultaneous to or subsequent to verification. The Latent Prints Case Review Checklist shall be used to ensure compliance with all procedures, as well as the documentation and reporting requirements described herein.

10.3 TECHNICAL DIFFERENCES OF OPINION

Technical differences of opinion may occur in the verification or review process. The resolution of technical differences of opinion shall follow the procedures described in the Quality-Operations Manual. Additional procedures specific to the Latent Prints functional area are described below.

When a technical difference of opinion is referred to the Technical Lead, a blind review will be prepared and assigned to another examiner, preferably one who is, to the extent possible, unaware of the people involved and the questioned result. Documentation of the relevant analysis
and comparison results shall be provided by the blind reviewer to the Technical Lead. The result of the blind review shall be weighed by the Technical Lead in making a recommendation to the supervisor, scientist, verifier/reviewer, lab manager, and the QA Manager.

A summary of the blind review process, the blind reviewer’s documentation, and the resultant recommendation shall be provided by the Technical Lead to be retained in the case record.

If no agreement is reached, the difference of opinion will be referred to the QA Manager as described in the Quality-Operations Manual.
11.0 APPENDIX A- FORMULARIES

Exact measurements and proportions when preparing chemical solutions are desirable for consistent quality, but successful results in developing latent fingerprints are not dependent upon unequivocal accuracy. Recipes may be scaled as appropriate without changing the ratios.

Safety: Wear appropriate lab coat and gloves when mixing or using the following processes. Chemicals should be used in a fume hood, well-ventilated area, or outside. For additional safety procedures, see Latent Prints Technical Manual, Section 5; MSDS or SDS.

11.1 ACID YELLOW

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, clear or dark storage bottles

REAGENT PREPARATION:

- Acid Yellow 7 Staining Solution:
 1g Acid Yellow 7
 50mL Acetic Acid (Glacial, 98%)
 250mL Ethanol (98% or higher)
 700mL demineralized or distilled water

 * Preferably use an Erlenmeyer flask for preparation of the Acid Yellow 7 solution. Add water first and dissolve the Acid Yellow 7 powder in the water by swirling the flask or using a magnetic stirrer and a PTFE-covered stir bar. The powder will dissolve quickly. Then add ethanol and acetic acid (order not important).

- Blood Fixative:
 20g 5-Sulfosalicylic acid, dihydride
 1000mL demineralized or distilled water

 * Add components to a beaker/flask of sufficient size and mix until complete dissolution, using a magnetic stirrer.

- Wash Solution
 50mL Acetic Acid (Glacial, 98%)
 250mL Ethanol (98% or higher)
 700mL demineralized or distilled water

STORAGE:
Clear or dark bottles

SHELF LIFE:
Indefinite
11.2 AMIDO BLACK

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, clear or dark storage bottles

MIXING PROCEDURE 1 (METHANOL BASE)
* Use butyl rubber gloves.

Amido Black is mixed in two solutions: Developing and De-staining. In addition, there is a final rinse of distilled water.

DEVELOPER SOLUTION:

2 g Naphthol Blue Black
100 mL Glacial Acetic Acid
900 mL Methanol

Combine the above and mix on a stir plate until all the Naphthol Blue Black is dissolved (approx. 30 minutes).

DE-STAINING SOLUTION:

100 mL Glacial Acetic Acid
900 mL Methanol

FINAL RINSE SOLUTION:
Distilled water is preferred; however, tap water may be used.

MIXING PROCEDURE 2 (WATER BASE)
Amido Black water base formula consists of a fixative, citric acid stock, developer, and rinse solutions.

BLOOD FIXATIVE:

20 g 5-Sulphosalicylic Acid
1000 mL distilled water

Combine the above and mix on a stir plate until the acid is dissolved.

CITRIC ACID STOCK SOLUTION:

38 g Citric Acid
2 L distilled water

Combine the above and mix on a stir plate until the citric acid is dissolved.

DEVELOPER SOLUTION:

1 L Citric Acid stock solution
2 g Naphthol Blue Black
2 mL Kodak Photo Flo 200 Solution

Place the liter of citric acid stock solution onto a stirring device. Slowly add 2 grams of Naphthol blue black and stir for approximately 30 minutes. Add the Photo Flo 200 and stir lightly.
RINSE SOLUTION:
1 L Citric Acid stock solution

FINAL RINSE SOLUTION:
Distilled water is preferred; however, tap water may be used.

STORAGE:
Clear or dark bottles

SHELF LIFE:
Indefinite

11.3 ARDROX P-133D

EQUIPMENT:
Beaker, graduated cylinder, dark storage bottles

SAFETY:
Few safety hazards. Methanol is readily absorbed through the skin to cause the same effects as inhalation as well as optic nerve damage and gastrointestinal problems. Use butyl rubber gloves to protect against the components of this mixture when using methanol as the diluent.

MIXING PROCEDURE:
Ardrox P-133D does not have to be dissolved in any type of carrier; however, it may be diluted if preferred.

STORAGE:
Store in original container

SHELF LIFE:
Indefinite

11.4 BASIC YELLOW 40

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, clear or dark storage bottles

SAFETY:
Basic Yellow is a harmful irritant

MIXING PROCEDURES:

WATER BASED:
- 1 g Basic Yellow 40
- 1 L water
- 2 mL Photo-Flo

ETHANOL BASED:
- 2 g Basic Yellow 40
• 1 L Ethanol

STORAGE:
Clear or dark bottles

SHELF LIFE:
Indefinite

11.5 DFO (1,8-DIAZAFLUOREN-9-ONE)

EQUIPMENT:
Scales, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, dark storage bottles, oven or iron.

SAFETY:
HFE-7100 poses little flammability concerns with low overall toxicity. Glacial acetic acid is strongly irritating to eyes, nose, and throat and can cause skin burns upon contact. Both acetic acid and methanol are incompatible with strong oxidizers. Methanol is a flammable liquid and acetic acid is combustible. Methanol vapors irritate the eyes, nose, skin, and lungs and cause headache, drowsiness, and dizziness. Methanol is readily absorbed through the skin to cause the same effects as inhalation as well as optic nerve damage and gastrointestinal problems. Use butyl rubber gloves to protect against the components of this mixture.

MIXING PROCEDURE:
Combine the ingredients and stir on a stirring device for approximately twenty minutes, until the DFO is dissolved. Place in a dark bottle.

HFE-7100 WORKING SOLUTION:
• 0.25 g DFO
• 40 mL Methanol
• 20 mL Acetic acid
• 940 mL HFE-7100

STORAGE:
Store solutions in dark bottles. The working solution should be stored in a refrigerator.

SHELF LIFE:
more than six months

11.6 GUN BLUE/ACIDIFIED HYDROGEN PEROXIDE

EQUIPMENT:
beakers, magnetic, stirrer and stirring bar or other stirring device, storage bottles

REAGENT PREPARATION:
• Formula 44/40 (Instant Gun Blue)*
1 part reagent to 80 parts distilled water
* Birchwood Casey Super Blue was used.
• Outer’s Gun Blue
 1 part reagent to 40 parts distilled water

• Acidified Hydrogen Peroxide
 14.1ml of 5% household vinegar
 20.0ml of 3% household hydrogen peroxide

STORAGE:
Clear or dark bottles

SHELF LIFE:
Indefinite

11.7 1,2-INDANEDIONE & 1,2-INDANEDIONE + ZINC CHLORIDE

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, dark storage bottles

SAFETY:
All of the solvents used have the potential to form explosive or flammable vapor concentrations in air and can have respiratory or nervous system effects in high enough concentrations.

REAGENT PREPARATION:

1. **1,2-Indanedione Formula (mix in the following order)**
 - 2 g 1,2-Indanedione
 - 70 mL Ethyl Acetate
 - 930 mL HFE 7100

2. **Zinc Chloride Formula**
 - 0.4 g zinc chloride dissolved in
 - 10 mL absolute ethanol, then add
 - 1 mL ethyl acetate, then dilute with
 - 190 mL HFE-7100 carrier

3. **1,2-Indanedione + Zinc Chloride Formula**
 - Add 2mL of the zinc chloride solution to
 - 100mL of the indanedione solution

11.8 LUMICYANO

CHEMICALS:
Lumicyano Powder and Lumicyano Solution

EQUIPMENT:
Disposable container, scale
MIXING PROCEDURES:
Just prior to fuming, add the Lumicyano Solution to the Lumicyano Powder.

STORAGE:
Lumicyano Powder and Lumicyano Solution will be stored in its own packaging. Lumicyano Powder will be stored in general chemical storage. Lumicyano Solution will be stored in the refrigerator.

SHELF LIFE:
No data available.

11.9 M.B.D.

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, clear or dark storage bottles

MIXING PROCEDURE:
Stock Solution: Combine 1g MBD with 1000 mL Acetone and stir until all MBD is dissolved.

Working Solution: In order, combine 10mL MBD Stock Solution, 30 mL Methanol, 10 mL Isopropanol, and 950 mL Petroleum Ether. Do not place on a magnetic stirrer.

STORAGE:
Clear or dark bottles

SHELF LIFE
Stock Solution: indefinite
Working Solution: up to 6 months

11.10 NINHYDRIN

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, dark storage bottles, humidity chamber or steam iron

SAFETY:
All of the solvents used have the potential to form explosive or flammable vapor concentrations in air and can have respiratory or nervous system effects in high enough concentrations. Petroleum ether is a flammable liquid of moderate volatility. When inhaled, it will irritate the eyes, nose and throat and can cause central nervous system depression at high enough concentrations. It is irritating to the skin and will cause drying, cracking, and dermatitis. Nitrile rubber gloves are most effective. Acetone is a flammable liquid of moderate volatility. It is incompatible with oxidizers and acids. It is irritating to the eyes, nose, and throat, and can cause headache, dizziness, and depression of the central nervous system in high enough concentrations. It will cause dermatitis with prolonged or repeated contact. Butyl rubber or neoprene/butyl rubber gloves are most effective.
MIXING PROCEDURES:

NINHYDRIN (PETROLEUM ETHER CARRIER):

The petroleum ether carrier will not dissolve the Ninhydrin crystals. They must be dissolved in methanol. This formula will yield a 0.8% solution.

4 grams Ninhydrin
20 mL Methanol
480 mL Petroleum ether

The Ninhydrin crystals are first dissolved in methanol. The petroleum ether is added but it will not mix with the methanol. Pour off the top liquid and save. This is the solution you will use. The small amount of liquid that is left can be disposed of.

5 grams Ninhydrin
30 mL Methanol
40 mL Isopropyl Alcohol
930 mL Petroleum ether

The Ninhydrin crystals are first dissolved in methanol. The isopropyl alcohol is then added followed by the petroleum ether. This formula will yield a 0.5% solution.

Ninhydrin (Acetone carrier): This formula will yield a 0.6% solution. (NOTE: Not to be used on items containing either mechanical or handwritten inks.)

6 grams Ninhydrin
1000 mL Acetone

The Ninhydrin crystals will dissolve readily in acetone. Minimal stirring is required.

Normal working concentrations for Ninhydrin are 0.5% to 1.0% (w/v). Other concentrations are warranted on special surfaces when test impressions or an examiner’s personal experience indicate that a stronger or weaker solution is appropriate. Percentage concentration tables for weight/volume and weight/weight mixtures of Ninhydrin follow.

<table>
<thead>
<tr>
<th>Weight of Ninhydrin in Grams/Volume of Solution</th>
<th>0.2%</th>
<th>0.4%</th>
<th>0.5%</th>
<th>0.6%</th>
<th>0.75%</th>
<th>1.0%</th>
<th>1.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mL</td>
<td>0.2 g</td>
<td>0.4 g</td>
<td>0.5 g</td>
<td>0.6 g</td>
<td>0.75 g</td>
<td>1.0 g</td>
<td>1.5 g</td>
</tr>
<tr>
<td>1 pint</td>
<td>0.94 g</td>
<td>1.88 g</td>
<td>2.35 g</td>
<td>2.82 g</td>
<td>3.52 g</td>
<td>4.73 g</td>
<td>7.08 g</td>
</tr>
<tr>
<td>1 quart</td>
<td>1.89 g</td>
<td>3.78 g</td>
<td>4.73 g</td>
<td>5.67 g</td>
<td>7.09 g</td>
<td>9.46 g</td>
<td>14.19 g</td>
</tr>
<tr>
<td>1 liter</td>
<td>2.0 g</td>
<td>4.0 g</td>
<td>5.0 g</td>
<td>6.0 g</td>
<td>7.5 g</td>
<td>10.0 g</td>
<td>15.0 g</td>
</tr>
<tr>
<td>1 gallon</td>
<td>7.57 g</td>
<td>15.14 g</td>
<td>18.92 g</td>
<td>22.71 g</td>
<td>28.38 g</td>
<td>37.85 g</td>
<td>56.77 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight of Ninhydrin in Grams/Weight of Ethyl Ether</th>
<th>0.2%</th>
<th>0.4%</th>
<th>0.5%</th>
<th>0.6%</th>
<th>0.75%</th>
<th>1.0%</th>
<th>1.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lb</td>
<td>0.90</td>
<td>1.81</td>
<td>2.26</td>
<td>2.71</td>
<td>3.39</td>
<td>4.53</td>
<td>6.79</td>
</tr>
<tr>
<td>2 lbs</td>
<td>1.81</td>
<td>3.62</td>
<td>4.53</td>
<td>5.44</td>
<td>6.80</td>
<td>9.07</td>
<td>13.60</td>
</tr>
<tr>
<td>3 lbs</td>
<td>2.72</td>
<td>5.44</td>
<td>6.80</td>
<td>8.16</td>
<td>10.20</td>
<td>13.60</td>
<td>20.40</td>
</tr>
<tr>
<td>4 lbs</td>
<td>3.62</td>
<td>7.25</td>
<td>9.07</td>
<td>10.88</td>
<td>13.60</td>
<td>18.14</td>
<td>27.21</td>
</tr>
<tr>
<td>5 lbs</td>
<td>4.53</td>
<td>9.06</td>
<td>11.33</td>
<td>13.60</td>
<td>17.00</td>
<td>22.67</td>
<td>34.00</td>
</tr>
</tbody>
</table>
STORAGE:
Ninhydrin solutions should be stored in dark containers. When Ethyl Ether is used as the solvent, the solution should be stored in a refrigerator.

SHELF LIFE:
Up to one year

HFE-7100 CARRIER
MIXING PROCEDURE:
This formula will yield a 0.5% solution.

<table>
<thead>
<tr>
<th>Ninhydrin</th>
<th>5 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>45 mL</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>2 mL</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>5 mL</td>
</tr>
<tr>
<td>HFE-7100</td>
<td>1 L</td>
</tr>
</tbody>
</table>

The Ninhydrin crystals are first dissolved in ethanol. The ethyl acetate and acetic acid are then added followed by the HFE-7100. The two-phase/"oily" aspect of this solution can easily be eliminated without detriment to final solution via use of a laboratory separatory funnel. This additional procedure will dispose of the heterogeneous residual. Once separated, there is minimal problem with subsequent esterification, or the reappearance of the second phase and associated Ninhydrin precipitate.

STORAGE:
Store in dark containers

SHELF LIFE:
Stable between 0°C-35°C in excess of three months

11.11 NINHYDRIN HT SOLUTION

SAFETY:
HFE-7100 poses few flammability concerns with low overall toxicity. Petroleum ether and heptane are flammable liquids of moderate volatility. When inhaled, they will irritate the eyes, nose and throat and can cause central nervous system depression at high enough concentrations. Each is irritating to the skin and will cause drying, cracking, and dermatitis. Nitrile rubber gloves are most effective as protection for the hands.

PURCHASE:
NinhydrinHT

STORAGE:
Store in original or dark containers in a dark area

11.12 OIL RED O
EQUIPMENT
Scales, beakers, graduated cylinders, flasks, magnetic stirrer and stirring bar or other stirring device, dark storage bottles, titer plate shaker

SAFETY
Hazardous in case of ingestion. Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of inhalation. May be combustible at high temperature.

MIXING PROCEDURE:

STAIN SOLUTION:
1. Dissolve 1.54 g of ORO in 770 ml of methanol.
2. Dissolve 9.2 g of NaOH (sodium hydroxide) in 230 ml of distilled water and add it to the above solution.
3. Mix and filter, then store in a brown bottle away from light.

PH 7 BUFFER SOLUTION:
1. Add 101.55 g of sodium phosphate monobasic monohydrate to 1 L of distilled water and shake or stir until it is dissolved.
2. Add 338.79 g of sodium phosphate dibasic heptahydrate to 1 L of distilled water and shake or stir until it is dissolved. Application of low heat will speed dissolving process.
3. Mix the two solutions.
4. Add enough distilled water to increase volume to 4 L.

STORAGE
Dark bottles

SHELF LIFE
Indefinite

11.13 PHYSICAL DEVELOPER (PD)

EQUIPMENT:
Beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, scale, dark storage bottles.

SAFETY:
The solutions made consist of several strongly irritating and corrosive chemicals. Ferric nitrate and silver nitrate are both oxidizers and will cause burns and irritation upon contact. Pay close attention to label warnings and wear long cuffed nitrile, butyl, viton, or neoprene gloves to avoid skin contact, particularly when working with the dry chemicals. Contact lenses should not be worn when working with chemicals.

MIXING PROCEDURE OPTION 1:
Physical Developer Kit (Lightning Powder Co.)
CHEMICALS:
Solution A (20% Silver Nitrate solution), Solution B (Reductant solution)

WORKING SOLUTION:
- 5 mL Solution A
- 90 mL Solution B

Combine the two solutions and stir for 1 minute a short time prior to use.

STORAGE:
Store in a refrigerator (do not freeze) and keep out of sunlight

SHELF LIFE:
Working solution: one to two days. Solutions A and B: six months

MIXING PROCEDURE OPTION 2:
PD uses a Working Solution (utilizing Solutions A and B), a Stock Solution, and a Maleic Acid Solution

CHEMICALS:
Working Solution: protect from direct sunlight

SOLUTION A:
- 50 mL Distilled water
- 10 grams Silver Nitrate

Add the distilled water to the silver nitrate while stirring with a magnetic stirrer. Stir for one minute and place in a dark bottle.

SOLUTION B:
- 900 mL Distilled Water
- 30 grams Ferric Nitrate
- 80 grams Ferrous Ammonium Sulfate
- 20 grams Citric Acid

Add the solids to the distilled water and stir until all have dissolved and then stir for an additional five minutes.

STOCK SOLUTION:
- 1 L distilled water
- 4 grams n-Dodecylamine Acetate
- 4 grams Synperonic

Place distilled water into a two liter bottle. Add the n-Dodecylamine acetate while stirring with a magnetic stirrer. Add the synperonic to the solution and stir for at least thirty minutes. Transfer this solution (along with any solid matter) into a one liter storage bottle.

Add 40 mL of the Stock Solution to Solution B. After verifying that all the crystals in Solution A are dissolved, add this entire amount to the combination solution you have just made. This is your working solution.
MALEIC ACID:

- 1 L distilled water
- 25 g Maleic Acid

Add the Maleic acid to the distilled water while stirring with a magnetic stirrer.

STORAGE:

- Solution A- dark bottle in dark refrigerator
- Solution B- dark bottle in dark cupboard
- Stock Solution- dark bottle, room temperature
- Maleic Acid Solution- dark bottle, room temperature

SHELF LIFE:

- Solution A - twenty-four hours
- Solution B - several weeks
- Stock Solution - indefinitely
- Maleic Acid Solution - indefinitely

11.14 POLYCYANO UV

EQUIPMENT:
Disposable container, scoop

MIXING PROCEDURES:
PolyCyano UV is ready to use as is.

STORAGE:
General chemical storage within its own packaging.

SHELF LIFE:
No data available.

11.15 POWDERS

Many commercially produced latent print "dusting" powders are available and many are very similar from company to company. No powder is universally applicable to all types of non-porous surfaces and most examiners need a stock of a variety of types and colors of powders for specialized applications. While such powders are usually commercially procured, some examiners prefer to prepare a portion of their stock powders. Some of the common formulas for such preparation are listed below.

Powder stocks may be purged of unwanted contaminates or large powder particles by sifting them through a number 60 sieve or using a mortar and pestle. Storing powder in sealed containers and out of excessively humid conditions will reduce the need for such purging. Using a mortar and pestle to grind commercial powders (especially magnetic powders) can improve their fine consistency.
SAFETY:
Powders may be harmful over long periods of time if inhaled. Dusting with powder should occur
in a fume hood or in a well-ventilated area. If ventilation is not optimal, a face mask will reduce
inhalation.

EQUIPMENT:
Jar of fingerprint powder; fingerprint brushes – fiberglass, short bristle brush, or feather duster;
container to hold powder – shallow dish, lid, or lab weighing dish; lifting tape (or other lifting
device) – clear, frosted, or polyethylene; lift cards – smooth index stock or commercial lift cards;
flashlight, alternate light source, or good overhead lighting

POWDER FORMULAS:

- Black Powders:
- Ferric Oxide Base:
 10 parts black magnetic ferric oxide
 5 parts rosin
 5 parts lampblack
- Lampblack Base:
 10 parts lampblack
 4 parts rosin
 3 parts Fuller's earth
- Manganese Dioxide Base:
 10 parts manganese dioxide
 5 parts ferric oxide, black magnetic
 5 parts lampblack
 3 parts rosin

GOLD POWDER:
10 parts pale gold lining
5 parts rosin

GRAY POWDER:
4 parts Chemist's gray
1 part aluminum fine lining

ORANGE POWDERS:
5 parts red lead oxide
5 parts rosin
5 parts Fuller's earth
15 parts acacia powder
or
5 parts red lead oxide
15 parts rosin

RED-BROWN POWDERS:
Cuprous Oxide Base: 10 parts red cuprous oxide
5 parts basic lead carbonate

FERRIC OXIDE BASE:
5 parts red ferric oxide
5 parts rosin
MERCURIC SULFIDE BASE:
5 parts red mercuric sulfide
10 parts rosin

WHITE POWDERS:
Titanium Dioxide Base:
10 parts titanium dioxide
5 parts basic lead carbonate
5 parts rosin

LEAD CARBONATE BASE:
5 parts basic lead carbonate
3 parts titanium dioxide
2 parts gum Arabic

MIXED WHITE:
5 parts titanium dioxide
5 parts basic lead carbonate
5 parts gum Arabic

11.16 R.A.M.

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, dark storage bottles

SAFETY:
The Rhodamine 6G within RAM is classified as a suspected animal carcinogen, but sufficient evidence of human carcinogenicity has not been established. Inhalation of the mist and procedures that generate excessive mist are to be avoided. Ardrox P-133D presents few safety hazards when properly used in its neat form. Methanol vapors irritate the eyes, nose, skin, and lungs and cause headache, drowsiness, and dizziness. Methanol is readily absorbed through the skin to cause the same effects as inhalation as well as optic nerve damage and gastrointestinal problems. Petroleum ether is a flammable liquid of moderate volatility. It is irritating to the skin and will cause drying, cracking, and dermatitis. Nitrile rubber gloves are most effective as protection for the hands. Wash bottle type rinsing should be used in lieu of aerosol mist. If heat fuming is required, then this should occur under a fume hood. Use butyl rubber gloves to protect against the components of this mixture.

MIXING PROCEDURES:
Working Solution:

- Stock Solution #1 3 mL
- Stock Solution #2 7 mL
- Ardrox P-133D 2 mL
- Methanol 20 mL
- 2-Propanol 10 mL
- Acetonitrile 8 mL
Petroleum Ether 950 mL

Combine ingredients in the order listed and store in a dark bottle. Shake solution in bottle vigorously every thirty days.

STOCK SOLUTION #1:
Rhodamine 6G - 1 gram
Methanol - 1000 mL

STOCK SOLUTION #2:
MBD - 1 gram
Acetone - 1000 mL

STORAGE:
Store in a dark bottle

SHELF LIFE:
Indefinite

11.17 RHODAMINE 6G

EQUIPMENT:
Scales, beakers, graduated cylinder, magnetic stirrer and stirring bar or other stirring device, dark storage bottles

SAFETY:
Rhodamine 6G is classified as a suspected animal carcinogen, but sufficient evidence of human carcinogenicity has not been established. At relatively high levels of ingestion or absorption through the skin, it does cause chronic toxic effects in several body organs. Inhalation of the mist and procedures that generate excessive mist are to be avoided. Methanol vapors irritate the eyes, nose, skin, and lungs and cause headache, drowsiness, and dizziness. Methanol is readily absorbed through the skin to cause the same effects as inhalation as well as optic nerve damage and gastrointestinal problems. Wash bottle type rinsing should be used in lieu of aerosol mist. If heat fuming is required, then this should occur under a fume hood. Use butyl rubber gloves to protect against the components of this mixture.

MIXING PROCEDURES:
Combine ingredients for Stock Solution and place on a stirring device until all the Rhodamine 6G is thoroughly dissolved.

STOCK SOLUTION:
1 g Rhodamine 6G
1 L Methanol

WORKING SOLUTION:
5 mL Rhodamine 6G Stock Solution
500 mL Methanol

STORAGE:
Stock solution should be stored in a dark bottle
SHELF LIFE:
Indefinite

11.18 SILVER NITRATE

EQUIPMENT:
Scales, beakers, magnetic stirrer, graduated cylinder, dark glass storage bottles

SAFETY:
Eye protection should be worn. Methanol is highly flammable and toxic.

MIXING PROCEDURES:
Combine the following and stir until the solution is colorless.

- 10 g silver nitrate
- 500 ML METHANOL.

STORAGE:
Store in a dark glass bottle, in a dark area

SHELF LIFE:
Unused solution will keep indefinitely in the dark

11.19 SMALL PARTICLE REAGENT

EQUIPMENT:
Beakers,
- glass trays, funnel, garden spray bottles, measuring cylinder

SAFETY:
The Molybdenum disulphide powder should not be inhaled. Wear a particulate respirator when handling powder.

MIXING PROCEDURES:
SPR can either be sprayed or used as a bath solution.

WORKING SOLUTION:
- 30 g Molybdenum disulphide
- 1 L distilled water
- 2 drops Kodak Photoflo-200

STORAGE:
Labeled spray bottles

SHELF LIFE:
Day of use.
11.20 POWDER SUSPENSION

EQUIPMENT:
Glass or plastic tray, brush.

MIXING PROCEDURES:
Sticky-Side Powder: Place about 1 teaspoon of Sticky-Side powder into a shallow jar. Fill brown dropper-bottle half full of Photo-Flo 200 and half full of distilled water. Shake well. Using the dropper, add this solution to the powder in the shallow jar until you have a paste with the consistency of thin paint.

Powder Suspension:
- 1.5 g Molybdenum disulfide or fingerprint powder
- 5 mL Photoflo or liquid dish soap
- 5 mL distilled water

Prepare and utilize in the same manner as Sticky-side Powder. Mix and add powder to achieve appropriate consistency.

STORAGE:
Store all kit items within provided storage box

SHELF LIFE:
Items in pre-mixed state: indefinite. Mixed working solutions should be discarded after each use.

11.21 SUDAN BLACK

EQUIPMENT:
Beakers, balance, glass tray, plastic stirring rod, plastic forceps, glass storage bottles

MIXING PROCEDURES:
- Weigh out 15g of Sudan Black and place in clean 2L glass beaker
- Measure out 1L of industrial Methylated Spirit and add to beaker. Stir with plastic stirring rod.
- Measure out 500mL of distilled water, add to beaker, and stir. A black working solution will be produced.
- Transfer working solution to a clean, labeled glass bottle

STORAGE:
Labeled dark glass bottle

SHELF LIFE:
Working solution will keep indefinitely

11.22 KJELL CARLSON INNOVATION WETWOP™/WET POWDER SUSPENSION

EQUIPMENT:
Small tray, camel hair or paint brush
MIXING PROCEDURES:
Follow instructions on container. WetWop™ is ready-to-use and pre-mixed by the manufacturer.

STORAGE:
General chemical storage within its own packaging

SHELF LIFE:
Indefinite

11.23 TAPEGLO™

EQUIPMENT:
Tray, camel hair brush

MIXING PROCEDURES:
Follow instructions on container. TapeGlo™ is ready-to-use and pre-mixed by the manufacturer.

STORAGE:
General chemical storage within its own packaging

SHELF LIFE:
In pre-mixed state, indefinite

12.0 APPENDIX B – SUPPLIES & EQUIPMENT

12.1 SUPPLIES

12.1.1 BRUSHES:
A wide variety of types, shapes and sizes of brushes are available for processing evidence with powders. The total supply of different kinds of brushes required in a Latent Print discipline depends on the types of brushes and colors of powders used. An ample number of appropriate brushes will help to preclude cross-contamination of powders and brushes.

Brushes may be cleaned with mild detergent and water. Blow drying will help (especially with camel hair brushes) to prevent matting after washing with the soapy solution. Dirty or contaminated brushes cannot always be cleaned to alleviate stiff bristles. Brushes that have been cleaned and still have stiff bristles should not be used for dusting latent prints.

FEATHER BRUSH
Generally used for fluorescent powder applications and delicate processing purposes involving the removal of excess powder or soot.

FIBERGLASS BRUSH
Consists of fine fiberglass bristles and is used by many examiners as an all-purpose brush in lieu of several other sizes and types. The primary advantage is the ability to process a large area with considerably less "re-powdering" of the brush than other types. These brushes are more expensive than hair or feather brushes but often last longer than either type.
HAIR BRUSH

These brushes should be very soft and pliable and are appropriate for all powders, except magnetic. Stiff bristles can damage latent impressions, usually by causing light or dark streaks in the latent print. Commercially produced latent print hair brushes are most often made from camel hair. Soft fine brushes are appropriate for applying TapeGlo™, Wetwop™ and Sticky Side powder.

12.1.2 MAGNETIC WANDS

These wands are used only for the application of magnetic type powders (or mixtures of magnetic/conventional powders). In that the "bristles" involved consist of the magnetic powder itself, the applicator head of the wand will not wear out. One magnetic wand will suffice for many colors of powder. "Self-contained magnetic brushes" include a built-in powder reservoir.

12.1.3 CASTING MATERIAL

Commercially available silicone rubber or dental/die stone powder may be used for lifting difficult latent impressions from uneven surfaces. Mix according to manufacturer’s directions and apply to the intended casting area.

Should you need to change a light colored casting medium to dark, you can cautiously add black fingerprint powder to the mixture until the desired shade is achieved. Dark colored silicone rubber is available.

12.1.4 LIFTING MATERIALS

Lifting materials for latent fingerprints consist primarily of transparent, opaque, adhesive-coated materials and electrostatic dust lifts. The background color of the opaque lifting medium is dependent upon the color of the impression to be lifted.

Caution must be exercised in utilizing general-purpose tapes in place of specialized latent print lifting tape or lifts. The reason being that a thick adhesive emulsion base can cause the migration and disappearance of some latent print ridge detail (especially with some light colored powders) either immediately or over a period of days or weeks. Following is a list of recommended tapes and lifts for latent print preservation.

TAPE

Special latent print lifting tape, both transparent and frosted, is available from several commercial sources. They can be used with a wide variety of black or white backing materials, including pre-printed backing cards, index cards, photographic papers and vinyl backing tabs. Flexible lifting tape may be used in place of rubber lifters for curved surfaces.

HINGE LIFTS

These consist of a transparent lifting medium (tab) attached to a clear, black or white plastic backing tab. The lifting tab is usually of a less flexible nature than most lifting tapes that sometimes results in white circles surrounding powder particles (especially with magnetic powders). This can be mostly alleviated through the use of a more pliable medium. Lifts of materials similar to hinge lifts are available in sizes suitable for lifting palm prints and footprints.
RUBBER LIFTS
Available in black or white with transparent covers, the primary advantage is the ability to lift latent impressions from curved surfaces without the creases inherent to tape and hinge lifts. A disadvantage is that the ridge detail must be photographically (or optically as with a prism/mirror viewer) reversed to enable comparison with inkered impressions. Rubber lifts are also available in sizes appropriate for lifting entire palm prints and footprints.

GELATIN LIFTS
These are soft pliable lifts with a moist gelatin like base and can be used for dried mud, dried blood, or dust impressions. They may stand alone or can be used as an adjunct to the electrostatic lift for dust impressions. These are available commercially with black, white, or transparent backgrounds and come in various sizes.

12.1.5 POWDERS:
Many commercially produced latent print “dusting” powders are available. No powder is universally applicable to all types of non-porous surfaces and a variety of powders should be available.

12.1.6 MISCELLANEOUS SUPPLIES:
Lab ware, lab tools, personal protective equipment, and other miscellaneous supplies should be laboratory grade and suitable for the intended use.

12.2 EQUIPMENT
An Equipment Logbook containing necessary validation procedures, performance verifications, User’s Manual (or locations) and service and maintenance logs for each items will be maintained in each laboratory.

12.2.1 CYANOACRYLATE FUMING CHAMBERS (MVC™ CHAMBERS)
Calibration/Recertification
Performance verification is only required if the MVC™ is taken out of service for maintenance or repair. Required control tests with each use will suffice as regular performance checks.

Performance Verification: Deposit a sebaceous rich print onto a non-porous substrate of choice and place it with the fuming chamber. Run the MVC™ according to the manufacturer’s instructions. A positive test will result in a cyanoacrylate developed control print.

Maintenance
Replace the filter when specified and as instructed in the User Manual. Inspect, clean, and repair as needed. Log all maintenance in the Equipment Log.

12.2.2 CYVAC™ VACUUM SYSTEM
Calibration/Recertification
Performance verification is only required if the Cyvac™ is taken out of service for maintenance or repair. Required control tests with each use will suffice as regular performance checks.
Performance Verification: Deposit a sebaceous rich print onto a non-porous substrate of choice and place it with the fuming chamber. Run the Cyvac™ according to instructions in the Equipment Log. A positive test will result in a cyanoacrylate developed control print.

Maintenance

The manufacturer specifies that the Cyvac™ requires very little cleaning and maintenance. Inspect, clean, and repair as needed. Log all maintenance in the Equipment Log.

12.2.3 ALTERNATE LIGHT SOURCES (ALS)

Authorized alternate light sources are listed in the Equipment Log.

Calibration/Recertification

Performance verification is only required if an ALS is taken out of service for maintenance or repair. Control tests with fluorescent cyanoacrylate and various fluorescent reagents will suffice as regular performance checks.

Performance Verification: Examine a positive control print (fluoresced as expected with a verified ALS) developed with R6G, RAM, LCA, or PCA at 415nm-535nm with an orange viewing filter, and one developed with DFO at 515nm-590nm and a red viewing filter. A positive test will result in the expected fluorescence of each sample.

Maintenance

Inspect, clean, and repair as needed. Follow manufacturer’s instruction in the User Manual for cleaning. Log all maintenance in the Equipment Log.

12.2.4 OVENS

Authorized ovens are listed in the Equipment Log and may only be used for chemical processes described in this manual. Glass laboratory cylinders may be used to introduce humidity into the ovens, as needed.

Calibration/Recertification

As a development aid, oven usage does not require a precision temperature. Performance verification is only required when an oven is taken out of service for maintenance or repair. Control tests with various reagents requiring the use of an oven will suffice as regular performance checks.

Maintenance:

The ovens require very little cleaning and maintenance. Inspect, clean, and repair as needed. Log all maintenance in the Equipment Log.

12.2.5 BALANCES:

Authorized balances will be listed in the Equipment Log.

Calibration/Recertification

Balances will be calibrated at least once a year. No other regular performance checks are necessary.

Maintenance

Each balanced must be wiped clean after each use. Inspect and repair as needed. Log all repairs in the Equipment Log.
12.2.6 DIGITAL IMAGE CALIBRATION TOOL CHECK:

Incorporated into digital asset management software is a utility called the "Image Calibration Tool". This utility resizes the captured image to bring it to an original 1:1 size.

Calibration/Recertification

The resizing is not a critical measurement for Latent Print analysis, and discrepancies of 5% (1mm per 2 cm) are within tolerance.

The Image Calibration Tool utility will be checked following installation, significant upgrades, repair, and/or replacement.

Performance Verification

- Photograph a scale into the system
- Calibrate the image using the Image Calibration Tool
- Print the calibrated image at actual size (1:1)
- Compare the scale with the imaged/printed scale. If it appears the same, the check is complete
- If the imaged scale is out of tolerance with the original scale, place the scale calibration utility out of service
- When the check is completed, initial and date the print-out and retain with the Equipment Log

Maintenance

The Image Calibration Tool is embedded in digital asset management software and requires no maintenance.

12.2.7 CAMERAS AND SCANNERS

Calibration/Recertification

Performance verifications are not required for DSLR cameras, scanners, and accessories. The images that are created indicate whether the equipment is working properly.

Maintenance Schedules

Maintenance of the cameras and scanners should be in accordance with manufacturers’ recommendations. Refer to the User's Manual retained in the Equipment Log for preventive measures and routine cleaning.

12.2.8 LASER

Authorized lasers are listed in the Equipment Log.

Calibration/Recertification

Performance verification is only required if a laser is taken out of service for maintenance or repair. Control tests with fluorescent cyanoacrylate and various fluorescent reagents will suffice as regular performance checks.
Performance Verification: Examine a positive control print (fluoresced as expected with a verified ALS) developed with DFO, Fluorescent Powder, Indanedione, R6G, RAM, or LCA with an orange viewing filter. A positive test will result in the expected fluorescence of each sample.

Maintenance

Inspect, clean, and repair as needed. Follow manufacturer’s instruction in the User Manual for cleaning. Log all maintenance in the Equipment Log.

12.3 CONTROLS

Commercially obtained or created materials used for control testing must be traceable.

12.3.1 BLOOD

The source of blood obtained for the creation of controls shall be documented and the lot shall be assigned a unique identifier. Any controls created from that source of blood shall reference the unique identifier.

12.3.2 REFERENCE PADS

The source of sebaceous oil or amino acid reference pads obtained for the creation of controls shall be documented and the lot shall be assigned a unique identifier. Any controls created from those pads shall reference the unique identifier.

13.0 APPENDIX C – REAGENT SPECIFICATIONS

13.1 CONSUMABLES AND CHEMICALS

Latent reagents have no established purity or impurity threshold, therefore reagents will be laboratory reagent grade (sufficient for the technical analysis), or greater. Since most reagents purchased from specialty latent print supply vendors generally do not have a specified grade, reagents will be functionally tested. The positive functioning of a reagent when tested at its creation (if made on site) and again during a daily (or more frequent) evidence processing session, in conjunction with appropriate documentation, shall suffice for establishing that a reagent is of an appropriate grade. See CLD Quality-Operations Manual.

The use of one’s own sweat or sebum or the use of the commercial fingerprint reference pads will suffice for the positive check of latent print reagents. Use of other materials will require the documentation of the specific control. An untouched area of the test piece shall suffice for the negative control.

Containers for chemical reagents and solvents should be kept tightly closed. All chemicals required for technical processing will be stored in accordance with applicable standards for that chemical. If appropriate, these chemicals will be marked with expiration dates. Disposal shall be in accordance with applicable standards.

Standard reference solutions and reagents prepared in the laboratory will be labeled properly with their identity, the date prepared, initials of the person who prepared them, lot number, and safety precautions. The lot number for each reagent used in processing will be recorded in the case notes.
<table>
<thead>
<tr>
<th>Consumable</th>
<th>Grade / or Approved Vendor</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingerprint powders</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Fingerprint lifting tape</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>2-Propanol</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Acid Yellow</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Ardrox P-133D</td>
<td>Fingerprint supply vendor</td>
<td></td>
</tr>
<tr>
<td>Basic Yellow</td>
<td>Grade appropriate for fingerprint processing</td>
<td></td>
</tr>
<tr>
<td>Citric Acid</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Cyanoacrylate gels, liquids, wand cups</td>
<td>Fingerprint supply vendor</td>
<td>X</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>DFO</td>
<td>Reagent grade</td>
<td>X</td>
</tr>
<tr>
<td>Distilled water</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Gentian violet (Crystal violet)</td>
<td>USP</td>
<td></td>
</tr>
<tr>
<td>Glacial Acetic Acid</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Heptane</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>HFE-7100</td>
<td>Industrial grade solvent</td>
<td></td>
</tr>
<tr>
<td>Indandieone</td>
<td>Reagent grade</td>
<td>X</td>
</tr>
<tr>
<td>Industrial methylated spirit</td>
<td>Industrial grade solvent</td>
<td></td>
</tr>
<tr>
<td>Iodine crystals (Iodine)</td>
<td>USP</td>
<td></td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Kodak Photo Flo 200 Solution</td>
<td>Kodak</td>
<td></td>
</tr>
<tr>
<td>MBD</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Lumicyano</td>
<td>Fingerprint supply vendor</td>
<td>X</td>
</tr>
<tr>
<td>Methanol</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Molybdenum disulphide</td>
<td>Grade appropriate for fingerprint processing</td>
<td></td>
</tr>
<tr>
<td>Naphthol Blue Black (Amido)</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>Ninhydrin, monohydrate</td>
<td>Reagent grade</td>
<td>X</td>
</tr>
<tr>
<td>NinhydrinHT</td>
<td>Fingerprint supply vendor</td>
<td>X</td>
</tr>
<tr>
<td>Petroleum ether</td>
<td>Laboratory Reagent</td>
<td></td>
</tr>
<tr>
<td>Physical Developer Part A and B</td>
<td>Fingerprint supply vendor</td>
<td>X</td>
</tr>
<tr>
<td>PolyCyano UV</td>
<td>Foster & Freeman</td>
<td></td>
</tr>
</tbody>
</table>

1 Where “Fingerprint supply vendor” is listed in lieu of a grade, the grade suitability for use will be verified by testing when reagent is made or used. See FLSB Quality/Operations Manual.
<table>
<thead>
<tr>
<th>Substance</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodamine 6G</td>
<td>Grade appropriate for fingerprint processing</td>
<td></td>
</tr>
<tr>
<td>Silver Nitrate</td>
<td>Reagent grade</td>
<td>X</td>
</tr>
<tr>
<td>Sudan Black B</td>
<td>Reagent grade</td>
<td></td>
</tr>
<tr>
<td>TapeGlo™</td>
<td>Brand name</td>
<td></td>
</tr>
<tr>
<td>WetWop™/Wet powder</td>
<td>Brand name or other rebranded Kjell Carlson innovation product</td>
<td></td>
</tr>
</tbody>
</table>
14.0 APPENDIX D – REFERENCE INFORMATION

14.1 METRIC EQUIVALENTS

<table>
<thead>
<tr>
<th>DRY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pound (lb)</td>
<td>= 453.6 grams (g)</td>
</tr>
<tr>
<td>1 ounce (oz)</td>
<td>= 28.35 g</td>
</tr>
<tr>
<td>1 g</td>
<td>= 0.035 oz</td>
</tr>
<tr>
<td>1 milligram (mg)</td>
<td>= 0.001 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIQUID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 milliliter (mL) (cc)</td>
<td>= 0.034 fluid oz</td>
</tr>
<tr>
<td>1 liter (L)</td>
<td>= 1000 mL</td>
</tr>
<tr>
<td>29.573 mL</td>
<td>= 1 fluid oz</td>
</tr>
<tr>
<td>500 mL</td>
<td>= 0.5 (1/2) L</td>
</tr>
<tr>
<td>3.79 (L)</td>
<td>= 1 gallon (gal)</td>
</tr>
<tr>
<td>18.95 L</td>
<td>= 5 gal</td>
</tr>
<tr>
<td>0.946 L</td>
<td>= 1 quart (qt)</td>
</tr>
</tbody>
</table>

14.2 CHEMICAL SYNONYMS

ACETONE:
dimethylformaldehyde, dimethylketal, dimethyl ketone, beta-ketopropane, propanone, 2-propanone, pyroacetic ether, B-ketopropane

A-NAPHTHOFLAVONE:
benzo(h)flavone, 7,8-benzoflavone, alpha-napthoflavone, alpha-naphthylflavone, 2-phenyl-4h-naphtho, (1,2-B)pyran-4-one

ARDROX P-133D:
Tracer Tech P-133D

CITRIC ACID:
beta-hydroxytricarballylic acid, 2-hydroxy-1,2,3-propanetricarboxylic acid, citric acid monohydrate

CYCLOHEXANE:
hexahydrobenzene, hexamethylene, hexanaphthene

ETHYL ETHER:
ethylene glycol monomethyl ether, 2-methoxyethanol, methyl glycol, glycolmethyl ether, methoxyhydroxyethane

FERROUS AMMONIUM SULFATE:
ammonium ferrous sulfate, ammonium iron (II) sulfate, mohr's salt, ferrous ammonium sulfate hexahydrate

GENTIAN VIOLET:
crystal violet, aniline violet, crystal violet chloride, hexamethyl pararosaniline chloride, oxiiuran, vermicid, hexamethyl-p-rosaniline chloride, hexamethy1-p-rosaniline hydrochloride, hexamethyl violet, methyl-rosaniline chloride, bismuth violet, gentiaverim, basic violet 3
GLACIAL ACETIC ACID:
acetic acid, ethanoic acid, vinegar acid, ethylic acid, pyroligeneus acid, methanecarboxylic acid

HFE-7100:
Hydrofluoroether, 1-methoxy-nonfluorobutane

ISOPROPYL ALCOHOL:
isopropanol, 2-propanol

MBD:
[7-{(Methoxybenzylamino)0-4\nitrobenz-2-oxa-1,3-Diazole}]

METHANOL:
methyl alcohol, carbinol, wood spirit, wood alcohol

METHYLENE CHLORIDE:
aerobane MM, dichloromethane, methane dichloride, methylene bichloride, methylene chloride, methylene dichloride

MOLYBDENUM DISULPHIDE:
(aka) Rocol A S Powder.

NAPHTHOL BLUE BLACK:
acidal black 10B, acidal navy blue 3BR, acid black 10A, 12B, 10BA, base M, 4BN, 4BNU, 10BN, BRX, BX, H, 1, or JVS, acid blue black B, 10B, BG, or double 600 (See MSDS for additional names)

N-DODECYLAMINE ACETATE:
alamine 4, amine BB, 1-aminododecane, armeen 12D, 1-Dodecanamine (9CI) 1-dodecylamine, kemamine P90, laurinamine, laurylamine, N-Laurylamine, monododecylamine, nissan amine BB

NINHYDRIN:
2,2-dihydroxy-1,3-indandione, indantrione, monohydrate, ninhydrin hydrate, triketohydrindene hydrate

PETROLEUM ETHER:
petroleum spirits, petroleum naptha, benzine

RHODAMINE 6G:
9-(2-(ethoxycarbonyl)phenyl)-3, 6-bis(ethylamino)-2, 7-dimethylxanthylum chloride, C.I. basic red I

WATER-BASED FIXATIVE SOLUTION:
5-sulphosalicylic acid in distilled H2O

14.3 ALS FILTER AND GOGGLE RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Wavelength of ALS</th>
<th>Recommended Filter and/or Goggles</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 400nm</td>
<td>Yellow or UV safe</td>
</tr>
<tr>
<td>400nm – 450nm</td>
<td>Yellow</td>
</tr>
<tr>
<td>450nm – 540nm</td>
<td>Orange</td>
</tr>
<tr>
<td>540nm – 700nm</td>
<td>Red</td>
</tr>
<tr>
<td>700nm – 1100nm</td>
<td>Red or IR</td>
</tr>
</tbody>
</table>

These are general recommendations and other combinations may result in better contrast especially at the extreme ends of each range where the chart shows overlap. In addition, other combinations, including not using filters, may provide better contrast when dealing with background fluorescence and scientist’s discretion should be used in determining the best combination.

It is required that both the wavelength of the ALS and type of goggles and/or filters used be documented in case notes.
15.0 APPENDIX E – ABBREVIATION INDEX

15.1 ADMINISTRATIVE TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLD</td>
<td>Crime Laboratory Division</td>
</tr>
<tr>
<td>CSRT</td>
<td>Crime Scene Response Team</td>
</tr>
<tr>
<td>FLSB</td>
<td>Forensic Laboratory Services Bureau</td>
</tr>
<tr>
<td>FS</td>
<td>Forensic Scientist</td>
</tr>
<tr>
<td>LIMS</td>
<td>Laboratory Information Management System</td>
</tr>
<tr>
<td>PEC</td>
<td>Property/Evidence Custodian</td>
</tr>
<tr>
<td>WSP</td>
<td>Washington State Patrol</td>
</tr>
</tbody>
</table>

15.2 AUTOMATED BIOMETRIC IDENTIFICATION SYSTEM (ABIS) TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL-DOJ</td>
<td>California Department of Justice</td>
</tr>
<tr>
<td>CRD</td>
<td>Criminal Records Division</td>
</tr>
<tr>
<td>DIS</td>
<td>Digital Imaging System</td>
</tr>
<tr>
<td>DOB</td>
<td>Date of Birth</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation</td>
</tr>
<tr>
<td>Ident.</td>
<td>Identification Section</td>
</tr>
<tr>
<td>LVMPD</td>
<td>Las Vegas Metro Police Department</td>
</tr>
<tr>
<td>NGI</td>
<td>Next Generation Identification system</td>
</tr>
<tr>
<td>SBPD</td>
<td>San Bernardino Police Department</td>
</tr>
<tr>
<td>SID</td>
<td>State Identification Number</td>
</tr>
<tr>
<td>ULW</td>
<td>Universal Latent Workstation</td>
</tr>
<tr>
<td>WASIS</td>
<td>Washington State Identification Section</td>
</tr>
<tr>
<td>WIN</td>
<td>Western Identification Network</td>
</tr>
</tbody>
</table>

15.3 ANALYSIS/COMPARISON/EVALUATION TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ</td>
<td>Better quality exemplars needed</td>
</tr>
<tr>
<td>CIR</td>
<td>Changed in review</td>
</tr>
<tr>
<td>CJE</td>
<td>Criminal Justice Employee</td>
</tr>
<tr>
<td>DisP</td>
<td>Distal Phalange</td>
</tr>
<tr>
<td>EX</td>
<td>Excluded</td>
</tr>
<tr>
<td>FP</td>
<td>Fingerprint</td>
</tr>
<tr>
<td>FJ</td>
<td>Finger joint</td>
</tr>
<tr>
<td>FRS</td>
<td>Friction Ridge Skin</td>
</tr>
<tr>
<td>FT</td>
<td>Fingertip</td>
</tr>
<tr>
<td>HQ</td>
<td>High Quality</td>
</tr>
<tr>
<td>IC</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>Img</td>
<td>Image</td>
</tr>
<tr>
<td>Imp</td>
<td>Impression</td>
</tr>
<tr>
<td>IPA</td>
<td>Inner Pattern Area</td>
</tr>
<tr>
<td>J</td>
<td>Joints of the fingers</td>
</tr>
<tr>
<td>LI</td>
<td>Left Index finger</td>
</tr>
<tr>
<td>LL</td>
<td>Left Little finger</td>
</tr>
<tr>
<td>LM</td>
<td>Left Middle finger</td>
</tr>
<tr>
<td>LQ</td>
<td>Low Quality</td>
</tr>
<tr>
<td>LR</td>
<td>Left Ring finger</td>
</tr>
<tr>
<td>LT</td>
<td>Left Thumb</td>
</tr>
<tr>
<td>L1 (L2, L3)</td>
<td>Level of Detail</td>
</tr>
</tbody>
</table>
MCP Major case prints
MCPN Major case prints needed
MedP Medial Phalange
MHQ Medium High Quality
MLQ Medium Low Quality
ND Not determined/unknown
Neg Negative
NSA Not suitable for ABIS search
NV No value
OV Of value
P Palm
PP Palm print
ProxP Proximal Phalange
Reg Registered to unidentified latent database
RD Ridge detail
RI Right Index finger
RL Right Little finger
RM Right Middle finger
RR Right Ring finger
RT Right Thumb
S Sides of the fingers
Sus Suspect
SWI See Working Image
T Tips of the fingers
Unk Unknown
VEO Of value for exclusion only
Vic Victim

15.4 PROCESSING EQUIPMENT AND TECHNIQUES

AAR Amino Acids Reference Pad
AB Amido Black
ALS/FLS Alternate.Forensic Light Source
Ax Ardrox
AY Acid Yellow
BY Basic Yellow
CA Cyanoacrylate
DFO 1,8-Diazafluoren-9-One
FC Fuming Cabinet
GB Gun Blue
GV Gentian Violet
HH Heat and humidity
IND 1,2-Indanedione
LAS Laser
LCA Lumicyano
MBD P-Methoxybenzlamino-4Nitrobenz-2-Oxa-1,3-Diazile
NIN Ninhydrin
NIN HT Ninhydrin HT
P Powder (used with modifier –see below)
PCA Polycyano UV
PD Physical Developer
RAM Rhodamine-Ardrox-MBD
R6G Rhodamine 6G
SPR Small Particle Reagent
SOR Sebaceous Oils Reference Pad
SS Sticky Side Powder
TG TapeGlo™
VIS Visual examination
WW Wetwop™
ZC Zinc Chloride

POWDER MODIFIERS:

B – Black
BI – Bi-chromatic
FL – Fluorescent
G - Green
M – Magnetic
R - Red
W – White

15.5 RIDGE DETAIL ASSESSMENT TERMS

NAO No additional ridge detail observed
NRD No ridge detail present
RD-NV Ridge detail - no value

15.6 FINGERPRINT PATTERN TYPES

A Arch
A-T Tented Arch
A-P Plain Arch
L Left Slant Loop
R Right Slant Loop
W Whorl
W-A Accidental Whorl
W-CP Central Pocket Loop Whorl
W-DL Double Loop Whorl
W-P Plain Whorl
16.0 APPENDIX F – LATENT PRINTS TECHNICAL MANUAL HISTORY

<table>
<thead>
<tr>
<th>LATENT PRINTS TECHNICAL MANUAL HISTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSUING AUTHORITY: QUALITY ASSURANCE MANAGER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION AND COMMENTS</th>
<th>DATE</th>
<th>AUTHOR/REVIEWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-001 Major Revision – considered new, original manual</td>
<td>March 3, 2009</td>
<td>Watson/Neilson</td>
</tr>
<tr>
<td>09-002 (Rev 1)</td>
<td>July 10, 2009</td>
<td>Auman/Neilson</td>
</tr>
<tr>
<td>7.0.2.1 – Documentation of analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0.5.7 – Registered Latents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-003 (Rev. 2)</td>
<td>August, 2009</td>
<td>Arwine/Luthy/Neilson</td>
</tr>
<tr>
<td>Appendix G – added abbreviations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revision 3

December 20, 2010

- Chapter 6 – Digital Imaging
- Revision 3 – Clean Manual

| 2011 Annual Review – includes both Technical and Training Manuals | December 23, 2011 | Brannan |

Revision 4

May 7, 2013

- Remove Appendix F, to create new LPL Training Manual

| May 7, 2013 | Brannan/Watson/Neilson |

Revision 5

November 1, 2013

- Changes to Section 3 – Terms and Definitions
- Changes to 7.023 and 7.024 – Up to current practice

| November 1, 2013 | Brannan/Watson |

Revision 6

March 4, 2014

- Delete Section 8.0.2 – Reporting Criteria
- Revise Balance Calibration – Appendix C

<p>| March 4, 2014 | Brannan/Watson |</p>
<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date</th>
<th>Changes</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 7</td>
<td>October 28, 2014</td>
<td>Add Procedures for Oil Red O</td>
<td>October 28, 2014</td>
</tr>
<tr>
<td></td>
<td>November 26, 2014</td>
<td>Rewrite Chapter 7</td>
<td>November 26, 2014</td>
</tr>
<tr>
<td></td>
<td>February 10, 2015</td>
<td>IBIS replaced by ABIS, manual changed to reflect</td>
<td>February 10, 2015</td>
</tr>
<tr>
<td>Revision 8</td>
<td>February 22, 2016</td>
<td>Section 2 – References, Section 5 – Physical Evidence Examination, Section 6 – Processing Techniques, Section 7 – Digital Imaging, Section 8 – Friction Ridge Impression Examinations, Section 8.4.4 – Verification, Section 9 – Reporting, Section 10 – ABIS, Section 16 – Appendix F Abbreviation Index</td>
<td>February 22, 2016</td>
</tr>
<tr>
<td>Revision 9</td>
<td>April 15, 2016</td>
<td>Addition of Lumicyano and PolyCyano UV 16, Multiple Changes to several sections (see DRA)</td>
<td>April 15, 2016</td>
</tr>
<tr>
<td>Revision 10</td>
<td>April 11, 2017</td>
<td>Update AFIS to ABIS and associated changes, Additional minor changes (see DRA)</td>
<td>April 11, 2017</td>
</tr>
<tr>
<td>Revision 11</td>
<td>February 1, 2018</td>
<td>Multiple changes to several sections (see DRA)</td>
<td>February 1, 2018</td>
</tr>
</tbody>
</table>